The Advanced Nuclear Industry
https://www.thirdway.org/report/the-advanced-nuclear-industry
Introduction
The American energy sector has experienced enormous technological innovation over the past decade in everything from renewables (solar and wind power), to extraction (hydraulic fracturing), to storage (advanced batteries), to consumer efficiency (advanced thermostats).
What has gone largely unnoticed is that nuclear power is poised to join the innovation list.
A new generation of engineers, entrepreneurs and investors are working to commercialize innovative and advanced nuclear reactors.
This is being driven by a sobering reality—the need to add enough electricity to get power to the 1.3 billion people around the world who don’t have it while making deep cuts in carbon emissions to effectively combat climate change.
Third Way has found that there are nearly 50 companies, backed by more than $1.3 billion in private capital, developing plans for new nuclear plants in the U.S. and Canada. The mix includes startups and big-name investors like Bill Gates, all placing bets on a nuclear comeback, hoping to get the technology in position to win in an increasingly carbon-constrained world.
This report introduces you to the advanced nuclear industry in North America. It includes the most comprehensive set of details about who’s working on these reactor designs and where. We describe the money and momentum building behind advanced nuclear, and how the technology has evolved since the Golden Age of Nuclear.
To be clear, this is not your grandfather’s nuclear technology. While developers in some cases are working off of technology designs conceived in our national laboratories during the 1950s and 1960s, the advanced reactor technologies being developed are safer, more efficient and need a fraction of the footprint compared to the nearly 100 light water reactors (LWRs) that provide almost 20% of the U.S.’s electricity today (and 65% of its carbon-free power). New plants could be powered entirely with spent nuclear fuel sitting at plant sites across the country, built at a lower cost than LWRs and shut down more easily in an emergency.
The need for nuclear power has never been clearer. To stem climate change, the world needs 40% of electricity to come from zero-emissions sources, according to the International Energy Agency (IEA). While we can and must grow renewable energy generation, it alone will leave us far short of meeting that demand, the U.N. Intergovernmental Panel on Climate Change (IPCC) and the U.S. Environmental Protection Agency (EPA) have said. This is why the IPCC in November issued an urgent call for more non-emitting power, including the construction of more than 400 nuclear plants in the next 20 years. That would represent a near doubling of the 435 plants operating globally today.
Nuclear power is on the cusp of a comeback. The technology may be the best opportunity we have to address climate change and meet the world’s growing energy needs.