NICS Unleashes ‘Kraken’ Supercomputer
April 4, 2008
New system prepares for transformational science
The National Institute for Computational Sciences (NICS) is the newest member of an elite supercomputing community. Dedicated on April 3, the organization — formed through a National Science Foundation (NSF) grant to the University of Tennessee and its partners — is on its way to delivering a soon-to-be petascale system that promises substantial contributions in the effort to solve the world’s greatest scientific challenges, such as understanding the fundamentals of matter and unlocking the secrets to the origin of our universe.
The system, a Cray XT4 dubbed Kraken (after a gargantuan sea creature in Norse mythology), will come online in mid-summer and is expected to feature more than 18,000 2.3GHz AMD high-performance cores delivering 170 teraflops of performance. A new Cray-designed interconnect, featuring Cray SeaStar2 chips and high-speed links, will greatly increase reliability and provide for excellent scaling while eliminating the related cost and complications of external switches.
NICS is seeking “large, tightly coupled applications,” to take advantage of the newly-designed Cray interconnect, said NICS Project Director Phil Andrews. Currently a dozen large-scale applications are poised to run at NICS, spanning a diverse range of scientific fields including climate, fusion energy, biology, lattice QCD, and astrophysics. “ENZO cosmology simulations exhibit near-ideal scaling to 8,000 cores on the XT4,” said Michael Norman, a professor of physics at the University of California, San Diego. “Clearly even larger simulations are possible. This opens up all kinds of new frontiers in understanding cosmic evolution.”
Climate also figures to play a large role in Kraken’s research potential. As climate change continues to gain prominence both in the policy and scientific arenas, powerful systems such as Kraken will play an ever-increasing role in all types of climate simulations, from CO2 cycles to the role of ocean currents. Just as previous efforts in eastern Tennessee contributed substantially to the recent Nobel Prize given to the United Nations’ Intergovernmental Panel on Climate Change, Kraken also will greatly contribute to man’s understanding of his impact on the planet.
The Cray XT4 will ultimately evolve into a Baker system featuring more than 10,000 compute sockets, 100 trillion bytes of memory, and 2,300 trillion bytes of disk space. It will provide more than 700 million CPU hours per year and one petaflops of performance, making it the nation’s most powerful academic supercomputer.
Kraken is designed specifically for sustained application performance, scalability, and reliability and will incorporate key elements of the Cray Cascade system to prepare the user community for highly productive petascale science and engineering. The Cray XT4 will continue to operate in support of users until the Baker system is in full production.
The system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide for next-generation high-performance computing. The award was won in an open competition among high-performance computing (HPC) resource institutions vying to facilitate America’s continued competitiveness via the next generation of supercomputers.
https://www.hpcwire.com/2008/04/04/nics_unleashes_kraken_supercomputer-1/
https://twitter.com/EmeraldRobinson/status/1329084782370639882