Scientists reveal structural details of spike protein used in leading COVID-19 vaccine
Electron microscopy techniques showed that the coronavirus spikes maintained the desired shape in the vaccine, which should help stimulate an appropriate immune response.
August 07, 2020
LA JOLLA, CA — Scientists at Scripps Research have obtained high-resolution, atomic-scale details of the structure of a SARS-CoV-2 “spike” protein from an experimental COVID-19 vaccine—details that are consistent with the robust neutralizing antibody responses the vaccine elicited in preclinical and phase 1 clinical studies.
The experimental vaccine, NVX-CoV2373, is being developed and tested in clinical trials by the vaccine maker Novavax Inc. It uses lab-grown copies of the SARS-CoV-2 spike protein to stimulate neutralizing antibody responses to this key viral protein, with the goal of blocking new COVID-19 infections.
The new structural details, obtained using low-temperature electron microscope techniques, are available in the manuscript submitted to the open-access preprint repository bioRxiv. The molecular map of the Novavax spike protein could be helpful in evaluating the vaccine’s ongoing human clinical trial results.
“Our findings suggest that the speedy design and manufacture of this vaccine did not compromise the quality of the spike protein structure,” says the study’s senior author Andrew Ward, PhD, a professor in the Department of Integrative Structural and Computational Biology at Scripps Research.
SARS-CoV-2, the virus that causes COVID-19, appears to have originated from a bat coronavirus in China. It has now caused nearly 20 million human infections globally, including more than 700,000 deaths. A vaccine to prevent infection is the world’s highest public health priority—and in pursuit of that goal, dozens of research teams have designed and started testing potential vaccines.
The Novavax vaccine, like most other COVID-19 vaccine candidates, is designed to stimulate an immune response—ideally providing long-term immune “memory” against the SARS-CoV-2 spike protein. These spike proteins stud the surface of each coronavirus particle; they are the protrusions that give the virus its crown-like appearance and contain the segments the virus uses to penetrate and then infiltrate host cells.
In what may be a strategy for evading immune recognition, the spike protein has a floppy, ever-changing shape. The Novavax immunogen spike protein uses mutations to stabilize the spike protein in its functional shape so that the immune system can learn to recognize and attack it. This key advancement is based on discoveries made several years ago by Ward and collaborating researchers Jason McLellan, PhD (University of Texas at Austin), and Barney Graham, MD, PhD (Vaccine Research Center at the National Institutes of Health) in their structural studies of the seasonal coronavirus HKU1 and of the pandemic coronaviruses MERS and SARS.
1 of 2