Zn Mg Ho Quasicrystal icosahedron
As I have already said the E8 lie group is the tetrahedron grid fractal because one of its lower-dimensional forms which is a quasicrystal is made up of tetrahedrons so it is the (64) tetrahedron grid fractal. Also the tetractys forms tetrahedron. The Rhombic Tria- Contahedron, Zn-Mg-Ho QuasiCrystal Electron Diffractions (Shown on the right)
universal math solutions in dimensions 8 and 24
Mathematicians used “magic functions” to prove that two highly symmetric lattices solve a myriad of problems in eight- and 24-dimensional space.
Three years ago, Maryna Viazovska, of the Swiss Federal Institute of Technology in Lausanne, dazzled mathematicians by identifying the densest way to pack equal-sized spheres in eight- and 24-dimensional space (the second of these in collaboration with four co-authors). Now, she and her co-authors have proved something even more remarkable: The configurations that solve the sphere-packing problem in those two dimensions also solve an infinite number of other problems about the best arrangement for points that are trying to avoid each other.
The points could be an infinite collection of electrons, for example, repelling each other and trying to settle into the lowest-energy configuration. Or the points could represent the centers of long, twisty polymers in a solution, trying to position themselves so they won’t bump into their neighbors. There’s a host of different such problems, and it’s not obvious why they should all have the same solution. In most dimensions, mathematicians don’t believe this is remotely likely to be true.
But dimensions eight and 24 each contain a special, highly symmetric point configuration that, we now know, simultaneously solves all these different problems. In the language of mathematics, these two configurations are “universally optimal.”
The sweeping new finding vastly generalizes Viazovska and her collaborators’ previous work. “The fireworks have not stopped,” said Thomas Hales, a mathematician at the University of Pittsburgh who in 1998 proved that the familiar pyramidal stacking of oranges is the densest way to pack spheres in three-dimensional space.
Eight and 24 now join dimension one as the only dimensions known to have universally optimal configurations. In the two-dimensional plane, there’s a candidate for universal optimality — the equilateral triangle lattice — but no proof. Dimension three, meanwhile, is a zoo: Different point configurations are better in different circumstances, and for some problems, mathematicians don’t even have a good guess for what the best configuration is.
“You change the dimension or you change the problem a little bit and then things may be completely unknown,” said Richard Schwartz, a mathematician at Brown University in Providence. “I don’t know why the mathematical universe is built this way.”
Proving universal optimality is much harder than solving the sphere-packing problem. That’s partly because universal optimality encompasses infinitely many different problems at once, but also because the problems themselves are harder. In sphere packing, each sphere cares only about the location of its nearest neighbors, but for something like electrons scattered through space, every electron interacts with every other electron, no matter how far apart they are. “Even in light of the earlier work, I would not have expected this [universal optimality proof] to be possible to do,” Hales said.
“I’m very, very impressed,” said Sylvia Serfaty, a mathematician at New York University. “It’s at the level of the big 19th-century mathematics breakthroughs.”