"If you imagine a cell, you probably picture the colorful diagram in your cell biology textbook, with mitochondria, endoplasmic reticulum and nucleus. But is that the whole story? Definitely not," said Trey Ideker, Ph.D., professor at UC San Diego School of Medicine and Moores Cancer Center. "Scientists have long realized there's more that we don't know than we know, but now we finally have a way to look deeper."
Ideker led the study with Emma Lundberg, Ph.D., of KTH Royal Institute of Technology in Stockholm, Sweden and Stanford University.
In the pilot study, MuSIC revealed approximately 70 components contained within a human kidney cell line, half of which had never been seen before. In one example, the researchers spotted a group of proteins forming an unfamiliar structure. Working with UC San Diego colleague Gene Yeo, Ph.D., they eventually determined the structure to be a new complex of proteins that binds RNA. The complex is likely involved in splicing, an important cellular event that enables the translation of genes to proteins, and helps determine which genes are activated at which times.
https://phys.org/news/2021-11-cells-ai-technique-reveals.html