Study challenges evolutionary theory that DNA mutations are random
Mutations occur when DNA is damaged and left unrepaired, creating a new variation. The scientists wanted to know if mutation was purely random or something deeper. What they found was unexpected.
"We always thought of mutation as basically random across the genome," said Grey Monroe, an assistant professor in the UC Davis Department of Plant Sciences who is lead author on the paper. "It turns out that mutation is very non-random and it's non-random in a way that benefits the plant. It's a totally new way of thinking about mutation."
Researchers spent three years sequencing the DNA of hundreds of Arabidopsis thaliana, or thale cress, a small, flowering weed considered the "lab rat among plants" because of its relatively small genome comprising around 120 million base pairs. Humans, by comparison, have roughly 3 billion base pairs.
"It's a model organism for genetics," Monroe said.
Lab-grown plants yield many variations
Work began at Max Planck Institute where researchers grew specimens in a protected lab environment, which allowed plants with defects that may not have survived in nature be able to survive in a controlled space.
Sequencing of those hundreds of Arabidopsis thaliana plants revealed more than 1 million mutations. Within those mutations a nonrandom pattern was revealed, counter to what was expected.
"At first glance, what we found seemed to contradict established theory that initial mutations are entirely random and that only natural selection determines which mutations are observed in organisms," said Detlef Weigel, scientific director at Max Planck Institute and senior author on the study.
Instead of randomness they found patches of the genome with low mutation rates. In those patches, they were surprised to discover an over-representation of essential genes, such as those involved in cell growth and gene expression.
"These are the really important regions of the genome," Monroe said. "The areas that are the most biologically important are the ones being protected from mutation."
The areas are also sensitive to the harmful effects of new mutations. "DNA damage repair seems therefore to be particularly effective in these regions," Weigel added.
Plant evolved to protect itself…
https://phys.org/news/2022-01-evolutionary-theory-dna-mutations-random.html