Anonymous ID: 8ea288 Jan. 22, 2022, 4:32 a.m. No.15435508   🗄️.is 🔗kun   >>5517

Using ice to boil water: Researcher makes heat transfer discovery that expands on 18th century principle

 

Water can exist in three phases: a frozen solid, a liquid, and a gas. When heat is applied to a frozen solid, it becomes a liquid. When applied to the liquid, it becomes vapor. This elementary principle is familiar to anyone who has observed a glass of iced tea on a hot day, or boiled a pot of water to make spaghetti.

 

When the heat source is hot enough, the water's behavior changes dramatically. According to Boreyko, a water droplet deposited onto an aluminum plate heated to 150 degrees Celsius (302 degrees Fahrenheit) or above will no longer boil. Instead, the vapor that forms when the droplet approaches the surface will become trapped beneath the droplet, creating a cushion that prevents the liquid from making direct contact with the surface. The trapped vapor causes the liquid to levitate, sliding around the heated surface like an air hockey puck. This phenomenon is known as the Leidenfrost effect, named for the German doctor and theologian who first described it in a 1751 publication.

 

 

…What was going on underneath the ice that prolonged the boiling? The project was picked back up by graduate student Mojtaba Edalatpour a short time later, to solve the mystery. Edalatpour had been working with Boreyko to develop novel methods of heat transfer and put that knowledge to work in approaching this problem. The answer turned out to be the temperature differential in the meltwater layer beneath the ice. The meltwater layer has two different extremes: Its bottom is boiling, which fixes the temperature at about 100 C, but its top is adhered to the remaining ice, which fixes it at about 0 C. Edalatpour's model revealed that the maintenance of this extreme temperature differential consumes most of the surface's heat, explaining why levitation was more difficult for ice.

 

https://phys.org/news/2022-01-ice-discovery-18th-century-principle.html