Anonymous ID: c08601 Jan. 25, 2023, 3 p.m. No.18225537   🗄️.is 🔗kun   >>5616 >>5667 >>5713

Experiments to Unlock How Human Bodies React to Long Space Journeys

Jan 23, 2023

 

Through Artemis, NASA astronauts are returning to the Moon in preparation for one day going to Mars. To better prepare astronauts for these long journeys, scientists need to know: How do extended durations in space change the human body?

 

Astronauts flying to the International Space Station can now volunteer for a suite of experiments that aim to help scientists learn more. Together, these experiments are called the Complement of Integrated Protocols for Human Exploration Research, or CIPHER.

 

“CIPHER is the first study to integrate multiple physiological and psychological measures, giving us a chance to assess the whole human response to time spent in space,” CIPHER project scientist Cherie Oubre explains. “As more astronauts head to space through Artemis and other programs, we hope to learn more about how the various systems of the body, such as the heart, muscles, bones, and eyes, adapt to long-term spaceflight.”

 

Through CIPHER, astronauts participate in an integrated set of 14 studies sponsored by NASA and international partner agencies. To get meaningful results, CIPHER scientists will study up to 30 astronauts, evenly divided over three mission-length categories:

 

Short (less than 3.5 months in space)

Standard (between 3.5 and eight months in space)

Extended (more than eight months in space)

 

CIPHER also includes a long-running study called Spaceflight Standard Measures, which collects a core set of information on as many crew members as possible. This core set includes metrics about the crew member’s sleep, cognition, biomarkers, immune function, microbiome, and more.

 

In addition to answering research questions central to each study, CIPHER takes an integrated approach – data across the CIPHER investigations will be evaluated to identify patterns and gain a deeper understanding of how the human body reacts to long durations in space. For instance: Do changes to the various systems of the body plateau across the board after specific amounts of time spent in space? Do changes in one system herald changes in another?

 

“CIPHER is an all-encompassing, total-body approach to learning how humans adapt to spaceflight,” says Oubre. “Insights gained through CIPHER may well be key to enabling humans to remain healthy while exploring the Moon, Mars, and beyond.”

 

https://www.nasa.gov/feature/experiments-to-unlock-how-human-bodies-react-to-long-space-journeys

https://www.nasa.gov/specials/artemis/

https://www.nasa.gov/hrp

Anonymous ID: c08601 Jan. 25, 2023, 3:03 p.m. No.18225563   🗄️.is 🔗kun   >>5667 >>5713 >>5726

NASA Validates Revolutionary Propulsion Design for Deep Space Missions

Jan 25, 2023

 

As NASA takes its first steps toward establishing a long-term presence on the Moon’s surface, a team of propulsion development engineers at NASA have developed and tested NASA’s first full-scale rotating detonation rocket engine, or RDRE, an advanced rocket engine design that could significantly change how future propulsion systems are built.

 

The RDRE differs from a traditional rocket engine by generating thrust using a supersonic combustion phenomenon known as a detonation. This design produces more power while using less fuel than today’s propulsion systems and has the potential to power both human landers and interplanetary vehicles to deep space destinations, such as the Moon and Mars.

 

Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and primary collaborator IN Space LLC, located in West Lafayette, Indiana, are confirming data from RDRE hot fire tests conducted in 2022 at Marshall’s East Test Area. The engine was fired over a dozen times, totaling nearly 10 minutes in duration.

 

The RDRE achieved its primary test objective by demonstrating that its hardware – made from novel additive manufacturing, or 3D printing, designs and processes – could operate for long durations while withstanding the extreme heat and pressure environments generated by detonations. While operating at full throttle, the RDRE produced over 4,000 pounds of thrust for nearly a minute at an average chamber pressure of 622 pounds per square inch, the highest pressure rating for this design on record.

 

The RDRE incorporates the NASA-developed copper-alloy GRCop-42 with the powder bed fusion additive manufacturing process, allowing the engine to operate under extreme conditions for longer durations without overheating.

 

Additional milestones achieved during the test include the successful performance of both deep throttling and internal ignition. This successful demonstration brings the technology closer to being used with future flight vehicles, enabling NASA and commercial space to move more payload and mass to deep space destinations, an essential component to making space exploration more sustainable. Because of NASA’s recent success with the RDRE, follow-on work is being conducted by NASA engineers to develop a fully reusable 10,000-pound class RDRE to identify performance benefits over traditional liquid rocket engines.

 

https://youtu.be/jBWUim-rppQ

https://www.nasa.gov/centers/marshall/feature/nasa-validates-revolutionary-propulsion-design-for-deep-space-missions