https://www.msn.com/en-us/news/technology/faint-gravitational-waves-may-be-from-primordial-fractures-in-space-time/ar-AA18G6HC
Faint gravitational waves may be from primordial fractures in space-time
The team, who reported their results recently in a paper submitted for publication in the Journal of Computational Astrophysics and published on arXiv.org, claim that they have seen evidence for so-called domain walls in the early universe.
When our universe was incredibly young, it was also incredibly exotic. The four forces of nature were bound up into a single, unified force. We do not know what that force looked like or how it operated, but we know that as the universe cooled and expanded, that unified force fractured into the four familiar forces we have today. First came gravity, then the strong nuclear force splintered off, and lastly, the electromagnetic and weak nuclear forces split from each other.
The team, who reported their results recently in a paper submitted for publication in the Journal of Computational Astrophysics and published on arXiv.org, claim that they have seen evidence for so-called domain walls in the early universe.
When our universe was incredibly young, it was also incredibly exotic. The four forces of nature were bound up into a single, unified force. We do not know what that force looked like or how it operated, but we know that as the universe cooled and expanded, that unified force fractured into the four familiar forces we have today. First came gravity, then the strong nuclear force splintered off, and lastly, the electromagnetic and weak nuclear forces split from each other.
With each of these splittings, the universe completely remolded itself. New particles arose to replace ones that could exist only in extreme conditions previously. The fundamental quantum fields of space-time that dictate how particles and forces interact with each other reconfigured themselves. We do not know how smoothly or roughly these phase transitions took place, but it's perfectly possible that with each splitting, the universe settled into multiple identities at once.
This fracturing isn't as exotic as it sounds. It happens with all kinds of phase transitions, like water turning into ice. Different patches of water can form ice molecules with different orientations. No matter what, all the water turns into ice, but different domains can have differing molecular arrangements. Where those domains meet walls, or imperfections, fracturing will appear.
Probing the GUT
Physicists are especially interested in the so-called GUT phase transition of our universe. GUT is short for "grand unified theory," a hypothetical model of physics that merges the strong nuclear force with electromagnetism and the weak nuclear force. These theories are just beyond the reach of current experiments, so physicists and astronomers turn to the conditions of the early universe to study this important transition.
The GUT phase transition, which occurred when the universe was the barest fraction of a second old, may very well have left behind domain walls, a network of boundaries between different configurations of space-time. These defects could not have lasted long, however. If they persisted for a few seconds, or even minutes, their intense energies would have thrown off the process of nucleosynthesis, which gave rise to all of the primordial hydrogen and helium in the universe or distorted our images of the cosmic microwave background (CMB), the leftover radiation from the Big Bang.
So this interconnected set of domain walls had to decay into other particles — either normal particles, like electrons or quarks, or more exotic particles, like some form of dark matter. Either way, that decay process, coupled with the undulating motion of the domain walls themselves, would have released a flood of gravitational waves that could persist to the present-day universe.
Surveying the domain
Those gravitational waves would be incredibly weak, and impossible to detect with existing ground-based gravitational wave facilities. But for over a decade, several teams of astronomers around the world have instead been looking to pulsars to map gravitational waves sloshing through the universe.
p1