NASA Awards Advance 3D Printing, Quantum Tech for Climate Research
Mar 16, 2023
New technology is a key to helping NASA advance its long-term exploration goals for the benefit of all. To support its effort, the agency announced Thursday it will create two new institutes to develop technology in critical areas for engineering and climate research.
Two new Space Technology Research Institutes (STRIs) will leverage teams led by U.S. universities to create multidisciplinary research and technology development programs critical to NASA's future. By bringing together science, engineering, and other disciplines from universities, industry, and non-profits, the institutes aim to impact future aerospace capabilities through investments in early-stage technology.
One of the research institutes will focus on quantum sensing technology in support of climate research. The other will work to improve understanding and help enable rapid certification of metal parts created using advanced manufacturing techniques.
"We're thrilled to draw on the expertise of these multi-university teams to create technology for some of our most pressing needs," said Jim Reuter, associate administrator for the agency’s Space Technology Mission Directorate at NASA Headquarters in Washington. "Their work will enable next-generation science for studying our home planet and broaden the use of 3D-printed metal parts for spaceflight with state-of-the-art modeling."
Each institute will receive up to $15 million over five years.
Quantum Pathways Institute
The University of Texas at Austin will lead the Quantum Pathways Institute, focused on advancing quantum sensing technology for next-generation Earth science applications. Such technology would enable new understanding of our planet and the effects of climate change.
Quantum sensors use quantum physics principles to potentially collect more precise data and enable unprecedented science measurements. These sensors could be particularly useful for satellites in orbit around Earth to collect mass change data – a type of measurement that can tell scientists about how ice, oceans, and land water are moving and changing. Though the basic physics and technology for quantum sensors have been proven in concept, work is required to develop quantum sensors at the precisions necessary for next-generation science needs during spaceflight missions.
1/2