It Is Now Easier Than Ever To View Mars Landscapes
June 12, 2023
U.S. Geological Survey releases huge amounts of Mars data in ready-to-use formats. This will allow scientists and the public to view Mars at high resolution with unprecedented ease
There is a huge difference between looking at a photo of the Grand Canyon and seeing it in person. If you want to look at another planet’s landscape, seeing it in person is not an option. That’s why a team at the U.S. Geological Survey used supercomputers and cloud computing to process and release a treasure trove of ready-to-use Mars data: more than 4,800 digital terrain models, known as DTMs, and more than 155,000 ultra-high-resolution images of the surface of the planet. Using these data products, you can now easily experience the Mars landscape in high res and 3D. It’s the next best thing to seeing Mars in person.
“Now anyone on the planet with a smart phone can search, use, and marvel at these data,” said Jay Laura, lead of the team at USGS’s Astrogeology Science Center that processed the data.
The topographic data come from the Context Camera on the Mars Reconnaissance Orbiter. The Context Camera provides images with a resolution of ~6 meters per pixel covering swathes 30 km (18.6 mi) wide and up to 160 km (100 mi) long. To produce a DTM, two overlapping images of the same area go through sophisticated computer processing to create a 3D view of the overlapping area, just as our brains process information from both eyes for depth perception. The NASA Ames Stereo Pipeline can be used to process individual pairs but aligning those pairs to each other and to global topography so that they can be seamlessly combined is no small feat.
To do this, the USGS Astrogeology team first roughly aligned the individual DTMs to global low-resolution topography, then fed all of those approximately aligned DTMs back into the computer, working in batches of several hundred DTMs at a time. This took an enormous amount of computer processing, so Astrogeology used the USGS Denali super computer housed at the Eros Data Center in Sioux Falls, SD to process the data over the course of a few weeks. On a personal computer, this would have taken between two and 35 years of continuous processing!
“These data are important because they democratize the availability of high-quality Mars topographic data,” Laura said. “Getting consistent, well aligned results is not easy. We felt it was important to generate and release these products so that others could freely access the data. When these data are highly accessible, anyone can contribute to scientific discovery.”
The 4,800 DTMs released so far are just the tip of the iceberg. They represent pairs that were collected alongside higher resolution image pairs from the High Resolution Imaging Science Experiment (HiRISE) camera. There are thousands of other potential CTX image pairs that Astrogeology is working to process, which will eventually result in even greater topographic coverage at 20 meters per pixel.
1/2