Effects of electromagnetic waves on pathogenic viruses and relevant mechanisms: a review
Abstract
Pathogenic viral infections have become a serious public health issue worldwide. Viruses can infect all cell-based organisms and cause varying injuries and damage, resulting in diseases or even death. With the prevalence of highly pathogenic viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is urgent to develop efficient and safe approaches to inactivate pathogenic viruses. Traditional methods of inactivating pathogenic viruses are practical but have several limitations. Electromagnetic waves, with high penetration capacity, physical resonance, and non-contamination, have emerged as a potential strategy to inactivate pathogenic viruses and have attracted increasing attention. This paper reviews the recent literature on the effects of electromagnetic waves on pathogenic viruses and their mechanisms, as well as promising applications of electromagnetic waves to inactivate pathogenic viruses, to provide new ideas and methods for this inactivation.
Conclusion
Electromagnetic wave radiation at a specific dose can destroy the structure and activity of multiple pathogenic viruses. The efficiency of viral inactivation is closely associated with the frequency, power density, and exposure time. Moreover, the underlying mechanisms include thermal effects, nonthermal effects, and structural resonance energy transfer effects. Compared with traditional antiviral technologies, electromagnetic wave-based viral inactivation has several advantages, such as simplicity, high efficiency, and low pollution. Therefore, electromagnetic wave-mediated viral inactivation has emerged as a promising antiviral technology for future application.
https://virologyj.biomedcentral.com/articles/10.1186/s12985-022-01889-w