Reinforcement learning AI might bring humanoid robots to the real world
The state-of-the-art software that controls the movements of bipedal bots often uses what’s called model-based predictive control. It’s led to very sophisticated systems, such as the parkour-performing Atlas robot from Boston Dynamics. But these robot brains require a fair amount of human expertise to program, and they don’t adapt well to unfamiliar situations. Reinforcement learning, or RL, in which AI learns through trial and error to perform sequences of actions, may prove a better approach.
“We wanted to see how far we can push reinforcement learning in real robots,” says Tuomas Haarnoja, a computer scientist at Google DeepMind and coauthor of one of the Science Robotics papers. Haarnoja and colleagues chose to develop software for a 20-inch-tall toy robot called OP3, made by the company Robotis. The team not only wanted to teach OP3 to walk but also to play one-on-one soccer.
https://www.sciencenews.org/article/reinforcement-learn-ai-humanoid-robots