Anonymous ID: 290143 Aug. 6, 2018, 12:44 a.m. No.2476987   🗄️.is 🔗kun   >>7044 >>7170 >>7197

>>2476958

Statement −

 

Let P and Q be two regular expressions.

 

If P does not contain null string, then R = Q + RP has a unique solution that is R = QP*

 

Proof −

 

R = Q + (Q + RP)P [After putting the value R = Q + RP]

 

= Q + QP + RPP

 

When we put the value of R recursively again and again, we get the following equation −

 

R = Q + QP + QP2 + QP3…..

 

R = Q (ε + P + P2 + P3 + …. )

 

R = QP [As P represents (ε + P + P2 + P3 + ….) ]