Article excerpts from 2013 about ARC processors mentioned in Israels backdoor posts, saying they are embedded in Intel processors.
November 6, 2013
Electronics Engineering Journal
Mystery CPU for the Masses
New Synopsys Processor Makes Leaps in Performance
by Jim Turley
https://www.eejournal.com/article/20131106-archs/
"Pop quiz! What’s the second-most-popular CPU core in the world? First place goes to ARM, of course, but who’s the runner-up?
If you guessed MIPS, PowerPC, x86, Tensilica, 8051, or XMOS, you’re wrong. (In good company, but still wrong.) The correct answer is: ARC.
According to Synopsys, 1.3 billion ARC processors were embedded into chips last year, and that number is growing by about 300 million per year. That puts ARC second only to the mighty ARM. Must be something about the name. Maybe all those designers thought they were getting ARM but licensed ARC by accident.
Not likely. ARC and ARM are vastly different beasts, even though both occupy the same phylum (or is that genus?) of the microprocessor taxonomic tree. They’re both 32-bit RISC processors; both are offered as licensed IP; both are used in SoC development; and both have a number of variations and configuration options. One runs practically every cellphone and tablet in the world, while the other one appears in… uh… where do all those billions of ARC processors go?
In just about anything that’s not a cellphone or a tablet, really. ARC-based chips are in cameras, utility meters, televisions, flash drives, cars, and on and on. Think “embedded system” or “system on chip” and you run a good chance of identifying a product harboring at least one ARC processor. (Extra credit for knowing that ARC has more licensees than ARM does, too.)…"
"…It’s the Silly Putty of CPUs. Developers can add and remove registers, invent their own instructions, change the caches, swap byte ordering, include an FPU, configure a hardware multiplier to improve performance or to save space, and more. It’s not so much a prepackaged processor as a smorgasbord of processor features that designers can browse and select from."
"…It’s intended as a deeply embedded CPU core for deeply embedded software. The HS has neither superscalar nor out-of-order execution, two tricks that could have improved performance at the cost of die area and power. Instead, its designers embraced RISC simplicity. In 28nm silicon, a minimally configured HS core measures just 0.12 mm2, which is about one-fifth the size of ARM’s Cortex-R7…"
"…So maybe the ARC HS isn’t going to power the next Windows Phone or Galaxy tablet. But it might wind up in ten times more devices that have lower profiles. If what you want is a small, unassuming little 32-bit CPU that spins away in some corner of your device, the HS may stand for “hidden secret.”"