Anonymous ID: b93c49 Dec. 12, 2018, 7:39 p.m. No.4286140   🗄️.is 🔗kun

>>4286043

Q-learning is a reinforcement learning technique used in machine learning. The goal of Q-learning is to learn a policy, which tells an agent what action to take under what circumstances. It does not require a model of the environment and can handle problems with stochastic transitions and rewards, without requiring adaptations.

 

For any finite Markov decision process (FMDP), Q-learning finds a policy that is optimal in the sense that it maximizes the expected value of the total reward over all successive steps, starting from the current state. Q-learning can identify an optimal action-selection policy for any given FMDP, given infinite exploration time and a partly-random policy. "Q" names the function that returns the reward used to provide the reinforcement and can be said to stand for the "quality" of an action taken in a given state.

 

https://en.wikipedia.org/wiki/Q-learning