Anonymous ID: f1a2df April 19, 2019, 8:49 p.m. No.6248445   🗄️.is 🔗kun

Artificial intelligence speeds efforts to develop clean, virtually limitless fusion energy…

 

Crucial to demonstrating the ability of deep learning to forecast disruptions – the sudden loss of confinement of plasma particles and energy – has been access to huge databases provided by two major fusion facilities: the DIII-D National Fusion Facility that General Atomics operates for the DOE in California, the largest facility in the United States, and the Joint European Torus (JET) in the United Kingdom, the largest facility in the world, which is managed by EUROfusion, the European Consortium for the Development of Fusion Energy. Support from scientists at JET and DIII-D has been essential for this work.

 

The vast databases have enabled reliable predictions of disruptions on tokamaks other than those on which the system was trained – in this case from the smaller DIII-D to the larger JET. The achievement bodes well for the prediction of disruptions on ITER, a far larger and more powerful tokamak that will have to apply capabilities learned on today's fusion facilities.

 

The deep learning code, called the Fusion Recurrent Neural Network (FRNN), also opens possible pathways for controlling as well as predicting disruptions.

 

Most intriguing area of scientific growth

 

"Artificial intelligence is the most intriguing area of scientific growth right now, and to marry it to fusion science is very exciting," said Bill Tang, a principal research physicist at PPPL, coauthor of the paper and lecturer with the rank and title of professor in the Princeton University Department of Astrophysical Sciences who supervises the AI project. "We've accelerated the ability to predict with high accuracy the most dangerous challenge to clean fusion energy."

 

Unlike traditional software, which carries out prescribed instructions, deep learning learns from its mistakes. Accomplishing this seeming magic are neural networks, layers of interconnected nodes – mathematical algorithms – that are "parameterized," or weighted by the program to shape the desired output. For any given input the nodes seek to produce a specified output, such as correct identification of a face or accurate forecasts of a disruption. Training kicks in when a node fails to achieve this task: the weights automatically adjust themselves for fresh data until the correct output is obtained.

 

A key feature of deep learning is its ability to capture high-dimensional rather than one-dimensional data. For example, while non-deep learning software might consider the temperature of a plasma at a single point in time, the FRNN considers profiles of the temperature developing in time and space. "The ability of deep learning methods to learn from such complex data make them an ideal candidate for the task of disruption prediction," said collaborator Julian Kates-Harbeck, a physics graduate student at Harvard University and a DOE-Office of Science Computational Science Graduate Fellow who was lead author of the Nature paper and chief architect of the code.

 

Training and running neural networks relies on graphics processing units (GPUs), computer chips first designed to render 3D images. Such chips are ideally suited for running deep learning applications and are widely used by companies to produce AI capabilities such as understanding spoken language and observing road conditions by self-driving cars.

 

Kates-Harbeck trained the FRNN code on more than two terabytes (1012) of data collected from JET and DIII-D. After running the software on Princeton University's Tiger cluster of modern GPUs, the team placed it on Titan, a supercomputer at the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility, and other high-performance machines….

 

https://www.sciencedaily.com/releases/2019/04/190417153611.htm