Anonymous ID: bdb7cd March 15, 2020, 11:12 a.m. No.8426290   🗄️.is 🔗kun   >>6347

>>8426219

sheinberg had a co called 'the bubble factory' for a while. Spent a lot of CHN money but had a falling out with Chicago /Wasserman/Korsach people .

 

sheinberg also into a pedovore director named Joel Schumacher

https://en.wikipedia.org/wiki/Joel_Schumacher

 

schumacher and steinberg reedited JAWS for spielberg - which he gratefully acknowledged at the time.

Anonymous ID: bdb7cd March 15, 2020, 11:21 a.m. No.8426382   🗄️.is 🔗kun

>>8426347

"There are a few yet, even at Sardis, who have not defiled their garments. They shall walk with me in white; for they are worthy."

 

https://biblehub.com/kjv/revelation/3-4.htm

Anonymous ID: bdb7cd March 15, 2020, 11:34 a.m. No.8426538   🗄️.is 🔗kun

What is different about the Wuhan bat soup novel coronavirus covid 19 international pandemic emergency?

 

https://www.cdc.gov/flu/pandemic-resources/1918-pandemic-h1n1.html

 

Influenza viruses cause annual epidemics and occasional pandemics that have claimed the lives of millions. The emergence of new strains will continue to pose challenges to public health and the scientific communities. A prime example is the recent emergence of swine-origin H1N1 viruses that have transmitted to and spread among humans, resulting in outbreaks internationally. Efforts to control these outbreaks and real-time monitoring of the evolution of this virus should provide us with invaluable information to direct infectious disease control programmes and to improve understanding of the factors that determine viral pathogenicity and/or transmissibility.

 

https://www.nature.com/articles/nature08157

 

The H1N1 virus has been comprehensively disassembled (sequenced) and logged into the NCBI Influenza Virus Resource database. For example, an instance of influenza known as A/Italy/49/2009(H1N1) isolated from the nose of a 26-year old female homo sapiens returning from the USA to Italy (I love the specificity of these database records), has its entire sequence posted at the NCBI website. It’s amazing — here’s the first 120 bits of the sequence.

 

atgaaggcaa tactagtagt tctgctatat acatttgcaa ccgcaaatgc agacacatta

Remember, each symbol represents 2 bits of information. This is alternatively represented as an amino acid sequence, through a translation lookup table, of the following peptides:

 

MKAILVVLLYTFATANADTL

In this case, each symbol represents an amino acid which is the equivalent of 6 bits (3 DNA-equivalent codons per amino acid). M is methionine, K is Lysine, A is Alanine, etc. (you can find the translation table here).

 

For those not familiar with molecular biology, DNA is information-equivalent to RNA on a 1 to 1 mapping; DNA is like a program stored on disk, and RNA is like a program loaded into RAM. Upon loading DNA, a transcription occurs where “T” bases are replaced with “U” bases. Remember, each base pair specifies one of four possible symbols (A [T/U] G C), so a single base pair corresponds to 2 bits of information.

 

……………………………….

 

If you thought of organisms as computers with IP addresses, each functional group of cells in the organism would be listening to the environment through its own active port. So, as port 25 maps specifically to SMTP services on a computer, port H1 maps specifically to the windpipe region on a human. Interestingly, the same port H1 maps to the intestinal tract on a bird. Thus, the same H1N1 virus will attack the respiratory system of a human, and the gut of a bird. In contrast, H5 — the variety found in H5N1, or the deadly “avian flu” — specifies the port for your inner lungs. As a result, H5N1 is much more deadly because it attacks your inner lung tissue, causing severe pneumonia. H1N1 is not as deadly because it is attacking a much more benign port that just causes you to blow your nose a lot and cough up loogies, instead of ceasing to breathe.

OK, before we get our hackles up about this little hack, let’s give Influenza some credit: after all, it packs a deadly punch in 3.2kbytes and despite our best efforts we can’t eradicate it. Could Influenza figure this out on its own?

 

The short answer is yes.

 

In fact, the Influenza virus is evolved to allow for these adaptations. Normally, when DNA is copied, an error-checking protein runs over the copied genome to verify that no mistakes were made. This keeps the error rate quite low. But remember, Influenza uses an RNA architecture. It therefore needs a different mechanism from DNA for copying.

 

It turns out that Influenza packs inside its virus capsule a protein complex (RNA-dependent RNA polymerase) that is customized for its style of RNA copying. Significantly, it omits the error checking protein. The result is that there is about one error made in copying every 10,000 base pairs. How long is the Influenza genome? About 13,000 base pairs. Thus, on average, every copy of an Influenza virus has one random mutation in it.

 

Some of these mutations make no difference; others render the virus harmless; and quite possibly, some render the virus much more dangerous. Since viruses are replicated and distributed in astronomical quantities, the chance that this little hack could end up occurring naturally is in fact quite high. This is part of the reason, I think, why the health officials are so worried about H1N1: we have no resistance to it, and even though it’s not quite so deadly today, it’s probably just a couple mutations away from being a much bigger health problem.

 

https://www.bunniestudios.com/blog/?p=353