Formal fallacies
Main article: Formal fallacy
A formal fallacy is an error in logic that can be seen in the argument's form.[4] All formal fallacies are specific types of non sequitur.
Appeal to probability – a statement that takes something for granted because it would probably be the case (or might be the case).[5][6]
Argument from fallacy (also known as the fallacy fallacy) – the assumption that if an argument for some conclusion is fallacious, then the conclusion is false.[7]
Base rate fallacy – making a probability judgment based on conditional probabilities, without taking into account the effect of prior probabilities.[8]
Conjunction fallacy – the assumption that an outcome simultaneously satisfying multiple conditions is more probable than an outcome satisfying a single one of them.[9]
Masked-man fallacy (illicit substitution of identicals) – the substitution of identical designators in a true statement can lead to a false one.[10]
Propositional fallacies
A propositional fallacy is an error in logic that concerns compound propositions. For a compound proposition to be true, the truth values of its constituent parts must satisfy the relevant logical connectives that occur in it (most commonly: [and], [or], [not], [only if], [if and only if]). The following fallacies involve inferences whose correctness is not guaranteed by the behavior of those logical connectives, and hence, which are not logically guaranteed to yield true conclusions.
Types of propositional fallacies:
Affirming a disjunct – concluding that one disjunct of a logical disjunction must be false because the other disjunct is true; A or B; A, therefore not B.[11]
Affirming the consequent – the antecedent in an indicative conditional is claimed to be true because the consequent is true; if A, then B; B, therefore A.[11]
Denying the antecedent – the consequent in an indicative conditional is claimed to be false because the antecedent is false; if A, then B; not A, therefore not B.[11]
Quantification fallacies
A quantification fallacy is an error in logic where the quantifiers of the premises are in contradiction to the quantifier of the conclusion.
Types of quantification fallacies:
Existential fallacy – an argument that has a universal premise and a particular conclusion.[12]
Formal syllogistic fallacies
Syllogistic fallacies – logical fallacies that occur in syllogisms.
Affirmative conclusion from a negative premise (illicit negative) – a categorical syllogism has a positive conclusion, but at least one negative premise.[12]
Fallacy of exclusive premises – a categorical syllogism that is invalid because both of its premises are negative.[12]
Fallacy of four terms (quaternio terminorum) – a categorical syllogism that has four terms.[13]
Illicit major – a categorical syllogism that is invalid because its major term is not distributed in the major premise but distributed in the conclusion.[12]
Illicit minor – a categorical syllogism that is invalid because its minor term is not distributed in the minor premise but distributed in the conclusion.[12]
Negative conclusion from affirmative premises (illicit affirmative) – a categorical syllogism has a negative conclusion but affirmative premises.[12]
Fallacy of the undistributed middle – the middle term in a categorical syllogism is not distributed.[14]
Modal fallacy – confusing possibility with necessity.
Modal scope fallacy – a degree of unwarranted necessity is placed in the conclusion.