Any virus that infects T lymphocytes is never cleared and cannot be countered by any vaccine.
The sauce is basic immunology. B and T lymphocytes are the backbone of the immune system and rush into the fight well before any antibody can be produced and if infected and closed down t cell - cell mediated immunity, B antibody response.
innate viral defense is B and T lymphocytes it is basic immunology.
and I don't need google on that I have a doctorate on it.
you will not realize the full impact of the Chinese bio-weapon for at least a full year.
Sauce it.
sauce your side then.
Really how was 6 meter?
That is part of the immune cascade involved in the activation of the B and T lymphocytes just a small factor in the full cascade.
I can read this and understand it can you?
Since dysregulation of immune responses and temporal dynamics in T-cell activation have been noted in patients with COVID-19,4,7,8 we thus classified the patients into early (≤10 days), middle (11–20 days), late (21–30 days), and end (>30 days) stages of disease based on the time from symptom onset. The numbers of cases in the early, middle, late, and end stages were 5, 23, 33, and 34 in survived patients, and were 5, 12, 32, and 13 in deceased patients, respectively. Generally, deceased patients demonstrated higher number of neutrophils and lower number of lymphocytes compared to survived patients (Supplementary Table 2).
To gain greater insight into the kinetics of immune cells, flow cytometry was performed to explore the number, phenotype, and function of T, B, and dendritic cells (DC) as well as monocytes in survived and deceased patients (Supplementary Fig. 1). Although a comparable CD4+ T-cell count was noted between survived and deceased patients in the early stage, deceased patients displayed dramatically lower CD4+ T-cell count than survived patients in the middle and late stages, indicating the distinct immune response kinetics between two groups (Fig. 1a). We next examined the activation and effector function of CD4+ T cells by analyzing HLA-DR expression and IFN-γ producing ability. We found that the frequencies of HLA-DR+ and IFN-γ+ cells within CD4+ T cells were markedly increased in the middle stage compared to those in the early stage, which then rapidly declined in the late stage and kept a low level in the end stage in decreased patients (Fig. 1a). However, the frequencies of HLA-DR+ and IFN-γ+ cells within CD4+ T cells in survived patients continuously increased after symptom onset, and maintained at a certain level in the late and end stages (Fig. 1a). Thus, decreased patients demonstrated much higher frequency of HLA-DR+ cells within CD4+ T cells than survived patients in the middle stage, whereas both HLA-DR expression and IFN-γ producing ability of CD4+ T cells in the late stage in deceased patients were significantly lower than those in survived patients (Fig. 1a). Moreover, lower CD45RO expression on CD4+ T cells was noted, again, in deceased patients in comparison with that in survived patients in all stages (Fig. 1a). However, the expressions of CD45RA and CD28 on CD4+ T cells in the late and end stages were significantly higher in deceased patients than those in survived patients (Fig. 1a).
https://www.nature.com/articles/s41423-020-0483-y
kek I love that one.
fox is on the mail in ballot thing but no one has yet figured out treasury printed ballots.
In all stages, the number of CD8+ T cells in deceased patients was obviously lower than that in survived patients (Fig. 1b). Notably, deceased patients had significantly lower frequencies of HLA-DR+ and IFN-γ+ cells within CD8+ T cells compared with survived patients in the early stage (Fig. 1b). Although HLA-DR expression and IFN-γ producing ability of CD8+ T cells also showed an increased trend from early to middle stage in deceased patients, comparable frequencies of HLA-DR+ and IFN-γ+ cells were observed in the middle stage between survived and deceased patients (Fig. 1b). Similarly, IFN-γ producing ability of CD8+ T cells in the late stage in deceased patients was significantly lower than that in survived patients (Fig. 1b). In addition, deceased patients displayed significantly lower CD4/CD8 ratio compared with survived patients in the late and end stages, but there was no noticeable difference in CD4/CD8 ratio among different stages in both survived and deceased patients (Fig. 1c).
In contrast to the increase of NK cell count in survived patients in the late and end stages compared with that in the early and middle stages, deceased patients showed a gradual loss of NK cells after onset of symptoms (Fig. 1d). Although deceased patients had significantly higher monocyte count than survived patients in the early stage, the monocyte count was rapidly decreased post symptom onset in deceased patients, which resulted in the comparable monocytes in the late and end stages between two groups (Fig. 1e). In addition, the frequencies of CD16−CD14+ classical, HLA-DR+, and CD54+ monocytes within monocytes showed a decreasing trend after early stage in deceased patients; thus a remarkably lower frequencies of HLA-DR+ and CD54+ monocytes were noted in deceased patients than in survived patients in middle, late, and end stages (Fig. 1e).
The number of DC gradually decreased from early to end stage of disease in deceased patients, which was significantly lower in deceased patients than that in survived patients in the late and end stages (Fig. 1f). Similarly, the frequency of CD86+ DC was dramatically decreased in deceased patients than that in survived patients in the middle, late, and end stages (Fig. 1f). Intriguingly, in the early stage, the frequency of CD27+CD38+ plasma cells was significantly lower in deceased patients compared with survived patients, suggesting early initial of humoral response may associate with better COVID-19 outcome (Fig. 1g). In addition, the frequencies of CD27+CD38− memory B cells and CD24+CD27+ regulatory B cells were significantly lower in deceased patients than those in survived patients in the middle stage (Fig. 1g). Based on the above results, a schematic overview of dynamics of cellular immune responses in survived and deceased COVID-19 patients was developed (Fig. 1h). In the early stage, deceased patients displayed significant reduction of CD8+ T-cell count and frequency of plasma cells compared with survived patients, accompanying reduced activation and IFN-γ producing ability of CD4+ and/or CD8+ T cells. In the middle stage, although the numbers of CD4+ and CD8+ T cells further decreased, HLA-DR expression and IFN-γ producing ability of them rapidly increased in deceased patients. In the late stage, the numbers of CD4+ and CD8+ T cells, NK and DC were all remarkably decreased in deceased patients compared with survived patients; HLA-DR expression and IFN-γ producing ability of CD4+ and/or CD8+ T cells were decreased in deceased patients but with high expressions of CD28 and CD45RA. We also longitudinally evaluated the cellular immune responses in several patients from admission to discharge or death, and similar results were observed in representative two patients (Supplementary Fig. 2).
you are wrong read it - they studied those died and those that did not
asymptomatic would never be found to study,.
What the study shows is significant changes of immune relation to COVID-19 and some of the factors in the patients. It proves this virus is immune modulating not just a flu.
opps auto correct immune modulation.