79*51
(60, 1890, 62, 61, 1, 3904, 3904, 3781, 1951.5)
(60, 1830, 61, 60, 1, 3781, 3781, 3660, 1890.0)
(60, 1770, 60, 59, 1, 3660, 3660, 3541, 1829.5)
(60, 1712, 59, 58, 1, 3541, 3541, 3424, 1770.0)
(60, 1654, 58, 57, 1, 3424, 3424, 3309, 1711.5)
(60, 1598, 57, 56, 1, 3309, 3309, 3196, 1654.0)
(60, 1542, 56, 55, 1, 3196, 3196, 3085, 1597.5)
(60, 1488, 55, 54, 1, 3085, 3085, 2976, 1542.0)
(60, 1434, 54, 53, 1, 2976, 2976, 2869, 1487.5)
(60, 1382, 53, 52, 1, 2869, 2869, 2764, 1434.0)
(60, 1330, 52, 51, 1, 2764, 2764, 2661, 1381.5)
(60, 1280, 51, 50, 1, 2661, 2661, 2560, 1330.0)
(60, 1230, 50, 49, 1, 2560, 2560, 2461, 1279.5)
(60, 1182, 49, 48, 1, 2461, 2461, 2364, 1230.0)
(60, 1134, 48, 47, 1, 2364, 2364, 2269, 1181.5)
(60, 1088, 47, 46, 1, 2269, 2269, 2176, 1134.0)
(60, 1042, 46, 45, 1, 2176, 2176, 2085, 1087.5)
(60, 998, 45, 44, 1, 2085, 2085, 1996, 1042.0)
(60, 954, 44, 43, 1, 1996, 1996, 1909, 997.5)
(60, 912, 43, 42, 1, 1909, 1909, 1824, 954.0)
(60, 870, 42, 41, 1, 1824, 1824, 1741, 911.5)
(60, 830, 41, 40, 1, 1741, 1741, 1660, 870.0)
(60, 790, 40, 39, 1, 1660, 1660, 1581, 829.5)
(60, 752, 39, 38, 1, 1581, 1581, 1504, 790.0)
(60, 714, 38, 37, 1, 1504, 1504, 1429, 751.5)
(60, 678, 37, 36, 1, 1429, 1429, 1356, 714.0)
(60, 642, 36, 35, 1, 1356, 1356, 1285, 677.5)
(60, 608, 35, 34, 1, 1285, 1285, 1216, 642.0)
(60, 574, 34, 33, 1, 1216, 1216, 1149, 607.5)
(60, 542, 33, 32, 1, 1149, 1149, 1084, 574.0)
(60, 510, 32, 31, 1, 1084, 1084, 1021, 541.5)
(60, 480, 31, 30, 1, 1021, 1021, 960, 510.0)
(60, 450, 30, 29, 1, 960, 960, 901, 479.5)
(1, 421, 30, 29, 1, 901, 901, 842, 450.0)
(1, 392, 29, 28, 1, 842, 842, 785, 420.5)
(1, 365, 28, 27, 1, 785, 785, 730, 392.0)
(1, 338, 27, 26, 1, 730, 730, 677, 364.5)
(1, 313, 26, 25, 1, 677, 677, 626, 338.0)
(1, 288, 25, 24, 1, 626, 626, 577, 312.5)
(1, 265, 24, 23, 1, 577, 577, 530, 288.0)
(1, 242, 23, 22, 1, 530, 530, 485, 264.5)
(1, 221, 22, 21, 1, 485, 485, 442, 242.0)
(1, 200, 21, 20, 1, 442, 442, 401, 220.5)
(1, 181, 20, 19, 1, 401, 401, 362, 200.0)
(1, 162, 19, 18, 1, 362, 362, 325, 180.5)
(1, 145, 18, 17, 1, 325, 325, 290, 162.0)
(1, 128, 17, 16, 1, 290, 290, 257, 144.5)
(1, 113, 16, 15, 1, 257, 257, 226, 128.0)
(1, 98, 15, 14, 1, 226, 226, 197, 112.5)
(1, 85, 14, 13, 1, 197, 197, 170, 98.0)
(1, 72, 13, 12, 1, 170, 170, 145, 84.5)
(1, 61, 12, 11, 1, 145, 145, 122, 72.0)
(1, 50, 11, 10, 1, 122, 122, 101, 60.5)
(1, 41, 10, 9, 1, 101, 101, 82, 50.0)
(1, 32, 9, 8, 1, 82, 82, 65, 40.5)
(1, 25, 8, 7, 1, 65, 65, 50, 32.0)
(1, 18, 7, 6, 1, 50, 50, 37, 24.5)
(1, 13, 6, 5, 1, 37, 37, 26, 18.0)
(1, 8, 5, 4, 1, 26, 26, 17, 12.5)
(1, 5, 4, 3, 1, 17, 17, 10, 8.0)
(1, 2, 3, 2, 1, 10, 10, 5, 4.5)
(1, 1, 2, 1, 1, 5, 5, 2, 2.0)
(1, 0, 1, 0, 1, 2, 2, 1, 0.5)
(0, 0, 1, 0, 1, 1, 1, 0, 0.0)
(0, 0, 0, -1, 1, 0, 0, 1, -0.5)
These cells are (E,N,D,X,A,B, DD+E, XX+E, (B-A)/2)
This is pretty neat. What I did was generate cells A,B = (1,C), then I generated another cell with C = XX+E. This is because the identity 2NA = XX+E, so I figured if A is a factor of C, then it must also be a factor of XX+E. So I decided to test out the XX+E cells. From the bottom up, if you look at N's you get (ignoring invalid cells)
0,1,2,5,8,13,18,25,32,41,50,61,72
0, (+1), (+1), (+3), (+3), (+5), (+5), (+7), (+7), (+9), (+9)
Also you will notice that the D and X values increment by one. If we can find a way to perhaps traverse UP the graph then we may be able to find de way