CollegeAnon !LAbIRp9cT. ID: 68fb3c Jan. 16, 2018, 2:37 p.m. No.3054   🗄️.is 🔗kun

>>3053

I can generalize the D's so you can solve for any D for any (e,1)

 

D values:

0 1 2 3 4 5 6 7 8 9 10

(0,1): 4, 12, 24, 40, 60, 84, 112, 144, 180, 220, 264

(+8, +12, +16, +20, +24, +28, +32, +36, +40, +44)

(+4, +4, +4, +4, +4, +4, +4, +4, +4, +4)

 

(1,1): 2, 8, 18, 32, 50, 72, 98, 128, 162, 200, 242, 288)

(+6, +10, +14, +18, +22, +26, +30, +34, +38, +42, +46)

(+4, +4, +4, +4, +4, +4, …)

 

(2,1): 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265

(+4, +8, +12, +16, +20, +24, +28, +32, +36, …

 

(3,1): 3, 9, 19, 33, 51, 73, 99, 129, 163, 201, 243

(+6, +10, +14, +18, +22, +26, +30, +34,

 

(4,1): 2, 6, 14, 26, 42, 62, 86,114,146

+4, +8, +12, +16, +20, +24, +28

 

(5,1): 4,10,20,34,52,74,100,130,164,202

+6, +10, +14, +18, +22, +26, +30, +34, +38

 

(6,1): 3,7,15,27,43,63,87,115

+4, +8, +12, +16, +20, +24

 

(7,1): 5,11,21,35,53,75,101,131,165

+6, +10, +14, +18, +22, etc

 

(8,1): 4,8,16,28,44,64

+4, +8, +12, +16, +20, etc

 

(9,1): 6,12,22,36,54,75,102

+6, +10, +14, +18

 

So for (e,1). The D value can be generated from T by

D(t) = D(t-1) + shift

where shift is added and incremented by 4 every time it is added. For odd e rows it starts at 6, for even e rows it starts at 4.

The starting point, D(0), as you can see above, goes like this

 

E = 1, 2, 3, 4, 5, 6, 7, 8, 9,

D0= 2, 1, 3, 2, 4, 3, 5, 4, 6,

 

So if you are at even E:

D0 = E/2

odd E:

D0 = 1 + (E+1)/2

 

Also for any (e,1) we know that for odd E we have:

x[0] = 1

even E:

x[0] = 0