(d+n)^2 - (x+n)^2 = dd + e
(d+1)^2 - (x+1)^2 = dd + e
dd + 2d + 2 - (xx + 2x + 2) = dd + e
dd + 2d + 2 - xx - 2x - 2 = dd + e
2d - xx - 2x = e
2d - e = x(x+2)
2d = x(x+2) + e
d = (x(x+2) + e)/2
?
(d+n)^2 - (x+n)^2 = dd + e
(d+1)^2 - (x+1)^2 = dd + e
dd + 2d + 2 - (xx + 2x + 2) = dd + e
dd + 2d + 2 - xx - 2x - 2 = dd + e
2d - xx - 2x = e
2d - e = x(x+2)
2d = x(x+2) + e
d = (x(x+2) + e)/2
?
calculate any d value for any x in the first row (n=1). and x's go from x=e%2 and then you add +2 every time. Then from d-x you can get all As in the record