I've been briefly looking for some patterns in the binary versions of various things since nobody else is. Maybe if we find that particular patterns in powers of 2 come up that we can find a way to go from iteration to calculation. VQC has hinted as such, after all, however vaguely.
Here are the first 100 triangle numbers in base 2:
0000000000001
0000000000011
0000000000110
0000000001010
0000000001111
0000000010101
0000000011100
0000000100100
0000000101101
0000000110111
0000001000010
0000001001110
0000001011011
0000001101001
0000001111000
0000010001000
0000010011001
0000010101011
0000010111110
0000011010010
0000011100111
0000011111101
0000100010100
0000100101100
0000101000101
0000101011111
0000101111010
0000110010110
0000110110011
0000111010001
0000111110000
0001000010000
0001000110001
0001001010011
0001001110110
0001010011010
0001010111111
0001011100101
0001100001100
0001100110100
0001101011101
0001110000111
0001110110010
0001111011110
0010000001011
0010000111001
0010001101000
0010010011000
0010011001001
0010011111011
0010100101110
0010101100010
0010110010111
0010111001101
0011000000100
0011000111100
0011001110101
0011010101111
0011011101010
0011100100110
0011101100011
0011110100001
0011111100000
0100000100000
0100001100001
0100010100011
0100011100110
0100100101010
0100101101111
0100110110101
0100111111100
0101001000100
0101010001101
0101011010111
0101100100010
0101101101110
0101110111011
0110000001001
0110001011000
0110010101000
0110011111001
0110101001011
0110110011110
0110111110010
0111001000111
0111010011101
0111011110100
0111101001100
0111110100101
0111111111111
1000001011010
1000010110110
1000100010011
1000101110001
1000111010000
1001000110000
1001010010001
1001011110011
1001101010110
1001110111010