ID: 96e43e Aug. 8, 2018, 6:58 p.m. No.7166   🗄️.is 🔗kun

Some papers on GNFS:

 

http://www.ams.org/notices/199612/pomerance.pdf

 

An explanation of how it works is underway. It uses smooth numbers, though. In the 4th paper there is a part on smooth numbers

ID: 96e43e Aug. 12, 2018, 1:01 a.m. No.7232   🗄️.is 🔗kun

We were analyzing 2d today. Below are some tasks I think are worth looking at. Probably for rsa100 it should be done, so irrelevant patterns go away.

 

sqrt0 = floor_sqrt

analyze sequence f(x) = sqrt0(x*d), starting from x=1

analyze sequence f(x) = sqrt0(x*e), starting from x=1

analyze sequence f(x) = sqrt0(x*f), starting from x=1

 

hypothesis 1

the first and second sequence always repeat

 

if they don't repeat or repeat in too many terms, you can tack on another sqrt (just like the tree) and they will repeat.

 

my idea for analyzing these sequences comes from looking at sqrt(2d) and asking are 3d and 4d significant as well? combined with the remainder tree and the fact that finding where a sequence repeats solves the number in Shor's algorithm.

ID: 96e43e Aug. 12, 2018, 1:05 a.m. No.7233   🗄️.is 🔗kun

hypothesis 2

if 1 in f=2d+1-e is actually A in (e, N, T) then maybe f2=2d+a-e is significant too.

 

hypothesis 3

if the 2nd hypothesis is correct, then maybe 1 in (n-1) is actually (n-A) and therefore (n-a) is significant too

 

f2 - f = a - A

ID: 96e43e Aug. 15, 2018, 1:07 a.m. No.7248   🗄️.is 🔗kun   >>7249

I've been testing triangle numbers on rsa100.

 

If you calculate T-1(N) and take the difference of T(T-1(N)) and T(T-1(N)+1) you get a number that is extremely close to T-t on the order of same amount of digits (the difference in elements between na transform and solution in e,1)

 

Also if you recursively calculate a summation like so

 

T(1)+T(2)+T(4)+T(11)+T(68)+T(2407)+T(2899431)+T(4203353390611)+T(8834089863183560067072041)+T(39020571855401265512289573339484371018905006900193)+T(N)

 

and

 

T(1)+T(2)+T(4)+T(11)+T(68)+T(2407)+T(2899431)+T(4203353390611)+T(8834089863183560067072041)+T(39020571855401265512289573339484371018905006900193)+T(N-1)

 

where each preceding term from N and N-1 are the triangle inverses of the last term, then the difference between those sequences is N.

 

if you remove N and N-1 as terms and take the difference with N like so you also get a number that is extremely close to T-t on the order of same amount of digits

 

T(1)+T(2)+T(4)+T(11)+T(68)+T(2407)+T(2899431)+T(4203353390611)+T(8834089863183560067072041)+T(39020571855401265512289573339484371018905006900193) - N

 

-

 

N - T(1)+T(2)+T(4)+T(11)+T(68)+T(2407)+T(2899431)+T(4203353390611)+T(8834089863183560067072041)+T(39020571855401265512289573339484371018905006900192)

 

the two numbers close to T-t in question being

16822699634989797327123095165092932420211999031884

and

16822699634989797327123104264258038130140741377251

where T-t (if you can calculate this from c you win) =

18987613968471836961404436377722813927282768319099

ID: 96e43e Aug. 15, 2018, 1:14 a.m. No.7250   🗄️.is 🔗kun   >>7251 >>7256

I was motivated to check these triangle number sequences because in the case of 6107, N=64 and 64 = T(7)+T(8) and 7+8=15 which is the difference in t between the solution record and na transform in e,1.

ID: 96e43e Aug. 15, 2018, 12:46 p.m. No.7256   🗄️.is 🔗kun   >>7257

>>7250

This is false. I made a mistake there, N for c6107 is way larger. N = 2976

 

However I have another observation to make up for that mistake in this triangle number analysis. x of (-f, 1, T) = T-1(N)

 

7461

{65:3645:86:85:1:7461} (65, 3645, 43) (e, N, T)

{65:1:3730:85:3645:3817} (65, 1, 43) (e, 1, T)

{-108:1:3558:84:3474:3644} (-108, 1, 43) (-f, 1, T)

 

∆-1(N) = 84

 

6107

{23:2976:78:77:1:6107} (23, 2976, 39) (e, N, T)

{23:1:3053:77:2976:3132} (23, 1, 39) (e, 1, T)

{-134:1:2897:76:2821:2975} (-134, 1, 39) (-f, 1, T)

 

∆-1(N) = 76

 

93801

{165:46595:306:305:1:93801} (165, 46595, 153) (e, N, T)

{165:1:46900:305:46595:47207} (165, 1, 153) (e, 1, T)

{-448:1:46288:304:45984:46594} (-448, 1, 153) (-f, 1, T)

 

∆-1(N) = 304

 

145

{1:61:12:11:1:145} (1, 61, 6) (e, N, T)

{1:1:72:11:61:85} (1, 1, 6) (e, 1, T)

{-24:1:48:10:38:60} (-24, 1, 6) (-f, 1, T)

 

∆-1(N) = 10

 

287

{31:128:16:15:1:287} (31, 128, 8) (e, N, T)

{31:1:143:15:128:160} (31, 1, 8) (e, 1, T)

{-2:1:111:14:97:127} (-2, 1, 8) (-f, 1, T)

 

∆-1(N) = 15

 

rsa100c

 

{61218444075812733697456051513875809617598014768503:761302513961266680267809189066318714859034057480651323757098846024549192056136964455981270339102876:39020571855401265512289573339484371018905006900194:39020571855401265512289573339484371018905006900193:1:1522605027922533360535618378132637429718068114961380688657908494580122963258952897654000350692006139} (61218444075812733697456051513875809617598014768503, 761302513961266680267809189066318714859034057480651323757098846024549192056136964455981270339102876, 19510285927700632756144786669742185509452503450097) (e, N, T)

 

{61218444075812733697456051513875809617598014768503:1:761302513961266680267809189066318714859034057480690344328954247290061481629476448827000175346003069:39020571855401265512289573339484371018905006900193:761302513961266680267809189066318714859034057480651323757098846024549192056136964455981270339102876:761302513961266680267809189066318714859034057480729364900809648555573771202815933198019080352903264} (61218444075812733697456051513875809617598014768503, 1, 19510285927700632756144786669742185509452503450097) (e, 1, T)

 

{-16822699634989797327123095165092932420211999031886:1:761302513961266680267809189066318714859034057480612303185243444759036902482797480084962365332202681:39020571855401265512289573339484371018905006900192:761302513961266680267809189066318714859034057480573282613388043493524612909457995713943460325302489:761302513961266680267809189066318714859034057480651323757098846024549192056136964455981270339102875} (-16822699634989797327123095165092932420211999031886, 1, 19510285927700632756144786669742185509452503450097) (-f, 1, T)

 

∆-1(N) = 39020571855401265512289573339484371018905006900193

 

Same observation holds except it is the x of the e,1 record.

ID: 96e43e Aug. 15, 2018, 1:01 p.m. No.7257   🗄️.is 🔗kun

>>7256

T-1(N) is either x{-f,1,T} or x{e,1,T}

 

But there is an asymmetry here.

T-1(n) or T-1(n-1) is not equal (or even close to) x{-f, 1, t}, or x{e, 1, t} (solution records)

ID: 96e43e Aug. 15, 2018, 2:31 p.m. No.7258   🗄️.is 🔗kun   >>7259

rsa110 analysis

 

{7251398426599644794623954759043454469676218891789649338:17897117089862934387495903916284227701501889012114113090783625819274031122082020851638527741916458186435175261:5982828275968304004100317854118230313685793843723609073:5982828275968304004100317854118230313685793843723609072:1:35794234179725868774991807832568455403003778024228226193532908190484670252364677411513516111204504060317568667} (7251398426599644794623954759043454469676218891789649338, 17897117089862934387495903916284227701501889012114113090783625819274031122082020851638527741916458186435175261, 2991414137984152002050158927059115156842896921861804537) (e, N, T)

 

{7251398426599644794623954759043454469676218891789649338:1:17897117089862934387495903916284227701501889012114113096766454095242335126182338705756758055602252030158784333:5982828275968304004100317854118230313685793843723609072:17897117089862934387495903916284227701501889012114113090783625819274031122082020851638527741916458186435175261:17897117089862934387495903916284227701501889012114113102749282371210639130282656559874988369288045873882393407} (7251398426599644794623954759043454469676218891789649338, 1, 2991414137984152002050158927059115156842896921861804537) (e, 1, T)

 

{-4714258125336963213576680949193006157695368795657568809:1:17897117089862934387495903916284227701501889012114113096766454095242335126182338705756758055602252030158784333:5982828275968304004100317854118230313685793843723609073:17897117089862934387495903916284227701501889012114113090783625819274031122082020851638527741916458186435175260:17897117089862934387495903916284227701501889012114113102749282371210639130282656559874988369288045873882393408} (-4714258125336963213576680949193006157695368795657568809, 1, 2991414137984152002050158927059115156842896921861804537) (-f, 1, T)

 

∆-1(N) = 5982828275968304004100317854118230313685793843723609072

∆-1(N-1) = 5982828275968304004100317854118230313685793843723609072

∆-1(n) = 56415892823691513151002588

∆-1(n-1) = 56415892823691513151002588

 

{7251398426599644794623954759043454469676218891789649338:1:9303852447694684408344911826978140118950296432398266895204888436423619628647716470410476187019755759685209:136410061562149325263764671139067929487183338122546740:9303852447694684408344911826978140118950296432398266758794826874274294364883045331342546699836417637138469:9303852447694684408344911826978140118950296432398267031614949998572944892412387609478405674203093882231951} (7251398426599644794623954759043454469676218891789649338, 1, 68205030781074662631882335569533964743591669061273371) (e, 1, t)

 

{-4714258125336963213576680949193006157695368795657568809:1:9303852447694684408344911826978140118950296432398261048786674030268940792094533491248091988409250158622877:136410061562149325263764671139067929487183338122546741:9303852447694684408344911826978140118950296432398260912376612468119615528329862352180162501225912036076136:9303852447694684408344911826978140118950296432398261185196735592418266055859204630316021475592588281169620} (-4714258125336963213576680949193006157695368795657568809, 1, 68205030781074662631882335569533964743591669061273371) (-f, 1, t)

 

{7251398426599644794623954759043454469676218891789649338:1591376481547123786477396152060299026390686203475593:5982828275968304004100317854118230313685793843723609073:136410061562149325263764671139067929487183338122546740:5846418214406154678836553182979162384198610505601062333:6122421090493547576937037317561418841225758554253106999} (7251398426599644794623954759043454469676218891789649338, 1591376481547123786477396152060299026390686203475593, 68205030781074662631882335569533964743591669061273371) (e, n, t)

 

T-1(N) = x{e, 1, T} or x{-f, 1, T} observation holds.

 

triangleSummation(T-1(N)) = ts

ts = T(1)+T(2)+T(4)+T(13)+T(100)+T(5078)+T(12897767)+T(83176210704686)+T(3459141013595226072509109016)+T(5982828275968304004100317854118230313685793843723609072)

 

ts = 17897117089862934387495903916284227701501889012114113096132169019926664730920520256395609944257205578415628169

ts N

ts - N = 5348543200652633608838499404757082202340747391980452908

 

triangleSummation(T-1(N) - 1) = ts2

ts2 = T(1)+T(2)+T(4)+T(13)+T(100)+T(5078)+T(12897767)+T(83176210704686)+T(3459141013595226072509109016)+T(5982828275968304004100317854118230313685793843723609071)

 

ts2 = 17897117089862934387495903916284227701501889012114113090149340743958360726820202402277379630571411734692019097

N ts2

N - ts2 = 634285075315670395261818449361148111345046451743156164

 

num1 = ts - N

num2 = N - ts2

 

(num1 - num2)/2 =

2991414137984152002050158927059115156842896921861804536

T-t =

2923209107203077339418276591489581192099305252800531166

 

Approximation of T-t reached from c.

ID: 96e43e Aug. 15, 2018, 4:21 p.m. No.7260   🗄️.is 🔗kun

In cases where our approximation is too far away to be an approximation, 2 other approximations can be calculated, which work for rsa129 and rsa120 (the approximations are close, but the search space is so massive that iteration is still computationally unfeasible, so the approximation needs to be improved or learned from to get closer.)

 

rsa120 analysis

{276798643817788533350132260296625874116995171400783089588379:113505240647718681667129980473746834447937668233042390019086152667335248378823675608062518130457849501431800035015938730:476456169332959066192086833057656566733872508443700132335510:476456169332959066192086833057656566733872508443700132335509:1:227010481295437363334259960947493668895875336466084780038173258247009162675779735389791151574049166747880487470296548479} (276798643817788533350132260296625874116995171400783089588379, 113505240647718681667129980473746834447937668233042390019086152667335248378823675608062518130457849501431800035015938730, 238228084666479533096043416528828283366936254221850066167755) (e, N, T)

 

{276798643817788533350132260296625874116995171400783089588379:1:113505240647718681667129980473746834447937668233042390019086629123504581337889867694895575787024583373940243735148274239:476456169332959066192086833057656566733872508443700132335509:113505240647718681667129980473746834447937668233042390019086152667335248378823675608062518130457849501431800035015938730:113505240647718681667129980473746834447937668233042390019087105579673914296956059781728633443591317246448687435280609750} (276798643817788533350132260296625874116995171400783089588379, 1, 238228084666479533096043416528828283366936254221850066167755) (e, 1, T)

 

{-676113694848129599034041405818687259350749845486617175082642:1:113505240647718681667129980473746834447937668233042390019085676211165915419757483521229460473891115628923356334883603219:476456169332959066192086833057656566733872508443700132335508:113505240647718681667129980473746834447937668233042390019085199754996582460691291434396402817324381756414912634751267711:113505240647718681667129980473746834447937668233042390019086152667335248378823675608062518130457849501431800035015938729} (-676113694848129599034041405818687259350749845486617175082642, 1, 238228084666479533096043416528828283366936254221850066167755) (-f, 1, T)

 

e%4 = 3

∆-1(N) = 476456169332959066192086833057656566733872508443700132335508

 

triangleSummation(T-1(N)) =

T(1)+T(2)+T(5)+T(16)+T(142)+T(10281)+T(52863280)+T(1397263246090468)+T(976172289437637198279784066271)+T(476456169332959066192086833057656566733872508443700132335508)

113505240647718681667129980473746834447937668233042390019086252496098005964090096585348899032777024250358969739065683157

 

triangleSummation(T-1(N) - 1) =

T(1)+T(2)+T(5)+T(16)+T(142)+T(10281)+T(52863280)+T(1397263246090468)+T(976172289437637198279784066271)+T(476456169332959066192086833057656566733872508443700132335507)

113505240647718681667129980473746834447937668233042390019085776039928673005023904498515841376210290377850526038933347649

 

T-t approximation = 238228084666479533096043416528828283366936254221850066167754, 60 digits

T-t approximation 2 = 138399321908894266675066130147925964192187327052146016423327, 60 digits

T-t approximation 3 = 476456169332959066192086833057656566733872508443700132335509, 60 digits

T-t = 163707277846749007875573151874570744031821201620085731703441, 60 digits

Closest approximation: approximation 2, 60 digits

Closest approximation difference: 25307955937854741200507021726644779839633874567939715280114, 59 digits

∆-1(n) = 260470505313768807462186889446

 

[1/2]

ID: 96e43e Aug. 15, 2018, 4:23 p.m. No.7261   🗄️.is 🔗kun

{276798643817788533350132260296625874116995171400783089588379:1:11106701298127191112847355240730405916226091301428275464843399758107464187140818760660545833177599981455232730223775381:149041613639461050440940529308515078670230105203528668928627:11106701298127191112847355240730405916226091301428275464843250716493824726090377820131237318098929751350029201554846754:11106701298127191112847355240730405916226091301428275464843548799721103648191259701189854348256270211560436258892704010} (276798643817788533350132260296625874116995171400783089588379, 1, 74520806819730525220470264654257539335115052601764334464314) (e, 1, t)

 

{-676113694848129599034041405818687259350749845486617175082642:1:11106701298127191112847355240730405916226091301428275464842774260324491767024185733298179661532195878841585501422511243:149041613639461050440940529308515078670230105203528668928626:11106701298127191112847355240730405916226091301428275464842625218710852305973744792768871146453525648736381972753582617:11106701298127191112847355240730405916226091301428275464842923301938131228074626673827488176610866108946789030091439871} (-676113694848129599034041405818687259350749845486617175082642, 1, 74520806819730525220470264654257539335115052601764334464314) (-f, 1, t)

 

{276798643817788533350132260296625874116995171400783089588379:33922442069205032282149019766764497978931624740053939704438:476456169332959066192086833057656566733872508443700132335510:149041613639461050440940529308515078670230105203528668928627:327414555693498015751146303749141488063642403240171463406883:693342667110830181197325401899700641361965863127336680673013} (276798643817788533350132260296625874116995171400783089588379, 33922442069205032282149019766764497978931624740053939704438, 74520806819730525220470264654257539335115052601764334464314) (e, n, t)

 

To brainstorm that missing piece in the approximation I would look at the closest value and its difference.

 

[2/2]

ID: 96e43e Aug. 15, 2018, 4:27 p.m. No.7262   🗄️.is 🔗kun

rsa 129

{10127537895024395905251173100883802246370188433498376141602081316:57190812878944433834617889988073306005109148360621181281280921457158533038780477389984354088670452233171543980194516501823035186:10694934584086471525314207693308900296322993593605128511616736585:10694934584086471525314207693308900296322993593605128511616736584:1:114381625757888867669235779976146612010218296721242362562561842935706935245733897830597123563958705058989075147599290026879543541} (10127537895024395905251173100883802246370188433498376141602081316, 57190812878944433834617889988073306005109148360621181281280921457158533038780477389984354088670452233171543980194516501823035186, 5347467292043235762657103846654450148161496796802564255808368293) (e, N, T)

 

{10127537895024395905251173100883802246370188433498376141602081316:1:57190812878944433834617889988073306005109148360621181281280921467853467622866948915298561781979352529494537573799645013439771770:10694934584086471525314207693308900296322993593605128511616736584:57190812878944433834617889988073306005109148360621181281280921457158533038780477389984354088670452233171543980194516501823035186:57190812878944433834617889988073306005109148360621181281280921478548402206953420440612769475288252825817531167404773525056508356} (10127537895024395905251173100883802246370188433498376141602081316, 1, 5347467292043235762657103846654450148161496796802564255808368293) (e, 1, T)

 

{-11262331273148547145377242285733998346275798753711880881631391855:1:57190812878944433834617889988073306005109148360621181281280921467853467622866948915298561781979352529494537573799645013439771770:10694934584086471525314207693308900296322993593605128511616736585:57190812878944433834617889988073306005109148360621181281280921457158533038780477389984354088670452233171543980194516501823035185:57190812878944433834617889988073306005109148360621181281280921478548402206953420440612769475288252825817531167404773525056508357} (-11262331273148547145377242285733998346275798753711880881631391855, 1, 5347467292043235762657103846654450148161496796802564255808368293) (-f, 1, T)

 

e%4 = 0

∆-1(N) = 10694934584086471525314207693308900296322993593605128511616736583

∆-1(N-1) = 10694934584086471525314207693308900296322993593605128511616736583

 

triangleSummation(T-1(N)) =

T(1)+T(2)+T(5)+T(19)+T(195)+T(19232)+T(184947519)+T(17102792626580353)+T(146252757813905659871375936577926)+T(10694934584086471525314207693308900296322993593605128511616736583)

57190812878944433834617889988073306005109148360621181281280921457442231383311515200015871384883089959790751131906158453282803705

 

triangleSummation(T-1(N) - 1) =

T(1)+T(2)+T(5)+T(19)+T(195)+T(19232)+T(184947519)+T(17102792626580353)+T(146252757813905659871375936577926)+T(10694934584086471525314207693308900296322993593605128511616736582)

57190812878944433834617889988073306005109148360621181281280921446747296799225043674701663691574189663467757538301029941666067122

 

T-t approximation = 5347467292043235762657103846654450148161496796802564255808368291, 64 digits

T-t approximation 2 = 5063768947512197952625586550441812421542289645090922304348599772, 64 digits

T-t approximation 3 = 10694934584086471525314207693308900296322993593605128511616736584, 65 digits

T-t = 1028759532095353253114134196990247228746418031676057044411877127, 64 digits

Closest approximation: 5063768947512197952625586550441812421542289645090922304348599772, 64 digits

Closest approximation difference: 4035009415416844699511452353451565192795871613414865259936722645, 64 digits

∆-1(n) = 190419700934841194543373870443698

∆-1(n-1) = 190419700934841194543373870443698

ID: 96e43e Aug. 15, 2018, 4:30 p.m. No.7263   🗄️.is 🔗kun   >>7264

{10127537895024395905251173100883802246370188433498376141602081316:1:37302473431668114358131420783420175468441264382066034437953513370074778641178128081332420460685355563492329655197776241440137438:8637415519895765019085939299328405838830157530253014422792982330:37302473431668114358131420783420175468441264382066034437953513361437363121282363062246481161356949724662172124944761818647155108:37302473431668114358131420783420175468441264382066034437953513378712194161073893100418359760013761402322487185450790664233119770} (10127537895024395905251173100883802246370188433498376141602081316, 1, 4318707759947882509542969649664202919415078765126507211396491166) (e, 1, t)

 

{-11262331273148547145377242285733998346275798753711880881631391855:1:37302473431668114358131420783420175468441264382066034437953513368017259576987421575104152066704861105999493591845662152616383184:8637415519895765019085939299328405838830157530253014422792982331:37302473431668114358131420783420175468441264382066034437953513359379844057091656556018212767376455267169336061592647729823400853:37302473431668114358131420783420175468441264382066034437953513376654675096883186594190091366033266944829651122098676575409365517} (-11262331273148547145377242285733998346275798753711880881631391855, 1, 4318707759947882509542969649664202919415078765126507211396491166) (-f, 1, t)

 

{10127537895024395905251173100883802246370188433498376141602081316:18129831252057180249554918905369072823951862938527912049817621466:10694934584086471525314207693308900296322993593605128511616736582:8637415519895765019085939299328405838830157530253014422792982330:2057519064190706506228268393980494457492836063352114088823754252:55592012608096597043509984803375451783056877000913967034044961844} (10127537895024395905251173100883802246370188433498376141602081316, 18129831252057180249554918905369072823951862938527912049817621466, 4318707759947882509542969649664202919415078765126507211396491166) (e, n, t)

 

[2/2]

 

Approximation didn't work as well for rsa129. Still carving out a methodology here.

ID: 96e43e Aug. 16, 2018, 12:13 a.m. No.7269   🗄️.is 🔗kun

>>7268

>>7265

>>7266

Elaborating on this, he gave me polynomial for even and odd e

 

For even e:

nd = 2t^2 + 2nt + (e/2)

For odd e:

nd = 2t^2 + 2(n-1)t - (n - ((e+1)/2))

 

And when graphed the points which are whole integers will be elements, each point being (t, n). So two elements exist for semiprime c in this curve.

 

Pics are the points for c6107.

 

A way to find the preceeding integer point on this curve would be a solution. The problem is known in mathematical circles as non-trivial but not computationally infeasible.

ID: 96e43e Aug. 16, 2018, 12:22 a.m. No.7270   🗄️.is 🔗kun   >>7273

I'm still going to be working on the approximations if anyone has thoughts on those let me know. If we can calculate more accurate approximations we can get within the realm of solving these numbers (and maybe a solution like Chris described, since this approximation comes from a recursive triangle some of input T-1(N)).

 

Like Chris said there are different solutions just like a 4d object viewed in 3d space looks like different 3d objects. So do not be discouraged if it seems like things are going in different directions/different paths.

ID: 96e43e Aug. 16, 2018, 9:57 p.m. No.7275   🗄️.is 🔗kun   >>7276

c6107 is special because n is a triangle number.

 

6107

{23:2976:78:77:1:6107} (23, 2976, 39) (e, N, T)

 

{23:1:3053:77:2976:3132} (23, 1, 39) (e, 1, T)

 

{-134:1:2897:76:2821:2975} (-134, 1, 39) (-f, 1, T)

 

e%4 = 3

2d = 156

f = 134

∆-1(N) = 76

∆-1(N-1) = 76

 

triangleSummation(T-1(N)) =

T(1)+T(2)+T(4)+T(11)+T(76)

3006

 

triangleSummation(T-1(N) - 1) =

T(1)+T(2)+T(4)+T(11)+T(75)

2930

 

T-t approximation = 38, 2 digits

T-t approximation 2 = 8, 1 digits

T-t approximation 3 = 77, 2 digits

T-t = 15, 2 digits

Closest approximation: 8, 1 digits

Closest approximation difference: 7, 1 digits

∆-1(n) = 8

∆-1(n-1) = 7

 

{23:1:1163:47:1116:1212} (23, 1, 24) (e, 1, t)

 

{-134:1:1037:46:991:1085} (-134, 1, 24) (-f, 1, t)

 

{23:36:78:47:31:197} (23, 36, 24) (e, n, t)

ID: 96e43e Aug. 17, 2018, 12:21 a.m. No.7277   🗄️.is 🔗kun

Some experimental data for safekeeping.

 

c = rsa100

N = 761302513961266680267809189066318714859034057480651323757098846024549192056136964455981270339102876

∆-1(N) = 39020571855401265512289573339484371018905006900193

n = 14387588531011964456730684619177102985211280936

∆-1(n) = 169632476436630285119505

triangleSummation(T-1(N)) =

T(1)+T(2)+T(4)+T(11)+T(68)+T(2407)+T(2899431)+T(4203353390611)+T(8834089863183560067072041)+T(39020571855401265512289573339484371018905006900193)

 

triangleSummation(T-1(N) - 1) =

T(1)+T(3)+T(10)+T(67)+T(2406)+T(2899430)+T(4203353390610)+T(8834089863183560067072040)+T(39020571855401265512289573339484371018905006900192)

 

triangleSummation(T-1(N) - sqrt(d)) =

T(1)+T(2)+T(8)+T(63)+T(2372)+T(2898174)+T(4203351809684)+T(8834089863181060738192547)+T(39020571855401265512289567092839523150469841441251)

 

triangleSummation(T-1(N) - sqrt(2d)) =

T(1)+T(2)+T(8)+T(62)+T(2371)+T(2898118)+T(4203351666598)+T(8834089863180587847385815)+T(39020571855401265512289564505394507835344939828152)

 

∆1(∆-1(n)) = 14387588531011964456730676802388333031208282265

∆2(∆-2(n)) = 14387588530975214951661888938891904772729775106

∆3(∆-3(n)) = 14387555083370601538478896472570573635945074246

∆4(∆-4(n)) = 14273631718948863438208830586582694349507198856

∆5(∆-5(n)) = 9488836738160187798300677759237642920019716506

∆6(∆-6(n)) = 53327858858072239299138189326373798809103885

∆7(∆-7(n)) = 2076895351339769460477611370186681

ID: 96e43e Aug. 17, 2018, 12:30 a.m. No.7278   🗄️.is 🔗kun

c = rsa110

N = 17897117089862934387495903916284227701501889012114113090783625819274031122082020851638527741916458186435175261

∆-1(N) = 5982828275968304004100317854118230313685793843723609072

n = 1591376481547123786477396152060299026390686203475593

∆-1(n) = 56415892823691513151002588

triangleSummation(T-1(N)) =

T(1)+T(2)+T(4)+T(13)+T(100)+T(5078)+T(12897767)+T(83176210704686)+T(3459141013595226072509109016)+T(5982828275968304004100317854118230313685793843723609072)

 

triangleSummation(T-1(N) - 1) =

T(1)+T(3)+T(12)+T(99)+T(5077)+T(12897766)+T(83176210704685)+T(3459141013595226072509109015)+T(5982828275968304004100317854118230313685793843723609071)

 

triangleSummation(T-1(N) - sqrt(d)) =

T(1)+T(3)+T(11)+T(92)+T(5026)+T(12895116)+T(83176203672128)+T(3459141013595176615638324526)+T(5982828275968304004100317851672248245892102105984803468)

 

triangleSummation(T-1(N) - sqrt(2d)) =

T(1)+T(3)+T(11)+T(92)+T(5025)+T(12894997)+T(83176203035627)+T(3459141013595167258046486330)+T(5982828275968304004100317850659089300090567771214500056)

 

∆1(∆-1(n)) = 1591376481547123786477396143030577099882291366850166

∆2(∆-2(n)) = 1591376481546920421154689382900985625636153296142100

∆3(∆-3(n)) = 1591373857158754367809961369378063355314169683653515

∆4(∆-4(n)) = 1585747893594404099564413340729515765120866343772760

∆5(∆-5(n)) = 1338420359857405075273316351571726222383145912185046

∆6(∆-6(n)) = 9989452752508151923071579773982579506854290142986

∆7(∆-7(n)) = 30700002123226936025189367747945843590228731690

ID: 96e43e Aug. 17, 2018, 4:04 p.m. No.7281   🗄️.is 🔗kun

I created a new tree algorithm that uses T-1(input) as the d values and input - T(T-1(input)) as the e values.

 

Triangle Tree {

145 (c)

145 (c)

| 9 (e)

| | 3 (e)

| | | 2 (d)

| | | | 1 (e)

| | | | 1 (d)

| | 3 (d)

| | | 2 (d)

| | | | 1 (e)

| | | | 1 (d)

| 16 (d)

| | 1 (e)

| | 5 (d)

| | | 2 (e)

| | | | 1 (e)

| | | | 1 (d)

| | | 2 (d)

| | | | 1 (e)

| | | | 1 (d)

}

 

Remainder Tree {

145 (c)

| 1 (e)

| 12 (d)

| | 3 (e)

| | | 2 (e)

| | | | 1 (e)

| | | | 1 (d)

| | | 1 (d)

| | 3 (d)

| | | 2 (e)

| | | | 1 (e)

| | | | 1 (d)

| | | 1 (d)

}

ID: 96e43e Aug. 17, 2018, 4:05 p.m. No.7282   🗄️.is 🔗kun

N for 145 = 61

 

Triangle Tree(N) {

61 (c)

| 6 (e)

| | 3 (d)

| | | 2 (d)

| | | | 1 (e)

| | | | 1 (d)

| 10 (d)

| | 4 (d)

| | | 1 (e)

| | | 2 (d)

| | | | 1 (e)

| | | | 1 (d)

}

 

Remainder Tree(N) {

61 (c)

| 12 (e)

| | 3 (e)

| | | 2 (e)

| | | | 1 (e)

| | | | 1 (d)

| | | 1 (d)

| | 3 (d)

| | | 2 (e)

| | | | 1 (e)

| | | | 1 (d)

| | | 1 (d)

| 7 (d)

| | 3 (e)

| | | 2 (e)

| | | | 1 (e)

| | | | 1 (d)

| | | 1 (d)

| | 2 (d)

| | | 1 (e)

| | | 1 (d)

}

ID: 96e43e Aug. 17, 2018, 4:23 p.m. No.7283   🗄️.is 🔗kun

Take 16^2 + 9 from the 145 triangle tree

 

Triangle Tree(16^2+9) {

265 (c)

| 12 (e)

| | 2 (e)

| | | 1 (e)

| | | 1 (d)

| | 4 (d)

| | | 1 (e)

| | | 2 (d)

| | | | 1 (e)

| | | | 1 (d)

| 22 (d)

| | 1 (e)

| | 6 (d)

| | | 3 (d)

| | | | 2 (d)

| | | | | 1 (e)

| | | | | 1 (d)

}

 

22^2 + 12 = 31st triangle number = 496

 

Triangle Tree(T(31)) {

496 (c)

| 31 (d)

| | 3 (e)

| | | 2 (d)

| | | | 1 (e)

| | | | 1 (d)

| | 7 (d)

| | | 1 (e)

| | | 3 (d)

| | | | 2 (d)

| | | | | 1 (e)

| | | | | 1 (d)

}