I figured we could go with this one since it has the pastebin link dump and all the other introductory information, and because >>6746. Hopefully you all found your way here.
Currently working on proper verification of the latest VQC post. Just reminding myself of how BigInteger works.
I'm happy for you to wait for someone else to confirm as well (not to mention I'm currently in my bedroom while the other people who live here are having a party I'll have to show my face at eventually), but this seems far more important than not drinking around a bunch of drunk people.
>Next, we show how to calculate BigN of an odd number.
>All odd numbers are the difference of two squares.
>Every odd number is the difference of two consecutive squares.
1 = 1-0, 3 = 4-1, 5 = 9-4, etc.
>The product of two primes, is the difference two sets of squares.
Semiprimes are all odd since odd*odd, so they fit that pattern.
>The value of n for the product of 1 and c is defined now as BigN for odd numbers.
>Since d-a=x and x+n is the smaller square in the difference of two squares, then for odd numbers, BigN is ((c-1)/2)-x
>x is d-1, since a=1
This is fairly straight forward (for me, anyway). Algebra.
>Anyone want to show:
>RSA 2048
>c=RSA 2048
25195908475657893494027183240048398571429282126204032027777137836043662020707595556264018525880784406918290641249515082189298559149176184502808489120072844992687392807287776735971418347270261896375014971824691165077613379859095700097330459748808428401797429100642458691817195118746121515172654632282216869987549182422433637259085141865462043576798423387184774447920739934236584823824281198163815010674810451660377306056201619676256133844143603833904414952634432190114657544454178424020924616515723350778707749817125772467962926386356373289912154831438167899885040445364023527381951378636564391212010397122822120720357
>d=
I copied the C# code to Java so hopefully I did it all accurately. Obviously you'll be able to confirm that this is all correct.
floor(sqrt(above big number)) = 158732191050391204174482508661063007579358463444809715795726627753579970080749948404278643259568101132671402056190021464753419480472816840646168575222628934671405739213477439533870489791038973166834068736234020361664820266987726919453356824138007381985796493621233035112849373047484148339095287142097834807844
>e=
c - dd = 149730827186590819409161975355863102499674499386960841184873248110419525705142414412560340457818822465695973580080183089801154577153055685206470161899420076208154943348665238647007714095089342669905666884517354400122833485897064098153958317993833609635063079613328500485188782423277886515290863800949716792021
>BigN=
x is d-1 since a=1, so x = 158732191050391204174482508661063007579358463444809715795726627753579970080749948404278643259568101132671402056190021464753419480472816840646168575222628934671405739213477439533870489791038973166834068736234020361664820266987726919453356824138007381985796493621233035112849373047484148339095287142097834807843
n = ((c-1)/2)-x = 12597954237828946747013591620024199285714641063102016013888568918021831010353797778132009262940392203459145320624757541094649279574588092251404244560036422496343696403643888367985709173635130948187507485912345582538806689929547850048665229874404214200898714550321229345908597559373060757586327316141108434993615859020166427425368088424069958780819853230147577508164643339364712441831390650677628862077837124697517250971910788373374647441598985076306038901094587160385923033013611772476591818466822702222519806172328865872316642926190459725502720591581076567956723729060778728578126316270798047266909911419313225552335
>Remember BigN is the row in column e, where we always find (e,n,d,x,1,c)
So (1,c) for RSA2048 is at cell (149730827186590819409161975355863102499674499386960841184873248110419525705142414412560340457818822465695973580080183089801154577153055685206470161899420076208154943348665238647007714095089342669905666884517354400122833485897064098153958317993833609635063079613328500485188782423277886515290863800949716792021, 12597954237828946747013591620024199285714641063102016013888568918021831010353797778132009262940392203459145320624757541094649279574588092251404244560036422496343696403643888367985709173635130948187507485912345582538806689929547850048665229874404214200898714550321229345908597559373060757586327316141108434993615859020166427425368088424069958780819853230147577508164643339364712441831390650677628862077837124697517250971910788373374647441598985076306038901094587160385923033013611772476591818466822702222519806172328865872316642926190459725502720591581076567956723729060778728578126316270798047266909911419313225552335).
Oh for sure. Although I'm not sure that I'd tell a bunch of normalfags that an anonymous stranger on the internet has been trying to teach me and some others integer factorization for the last 7 months. I think I recognize that picture. Is it from a painting of a UFO? Or is it something completely different?