Continuing discussion from yesterday.
I've tried a number of combinations to link the various (0,n) records.
Following is the closest I've come to a workable path which seems to arrive at the desired a prime value.
((1xcc).x - (aaxbb).x) / ((1xcc).x - (axcb).x)) - 1 == (axb).a
The theory being, we can figure out how to walk backwards from the (1xcc) record, or really figure out the relationship between the various x values.
βββββββββ
15=3x5
1 x c *=(6,5,2) = {6:5:3:2:1:15} = 15;
a x b **=(6,1,1) = {6:1:3:0:3:5} = 15;
c x c =(0,0,1) = {0:0:15:0:15:15} = 225;
aa x bb *=(0,2,4) = {0:2:15:6:9:25} = 225;
b x ca =(0,10,6) = {0:10:15:10:5:45} = 225;
a x cb =(0,24,7) = {0:24:15:12:3:75} = 225;
1 x cc *=(0,98,8) = {0:98:15:14:1:225} = 225;
((1xcc).x - (aaxbb).x) / ((1xcc).x - (axcb).x)) - 1 == (axb).a
((14-6)/(14-12)) - 1 == 3 = 3; (a matches)
βββββββββ
65=5x13
1 x c *=(1,25,4) = {1:25:8:7:1:65} = 65;
a x b **=(1,1,2) = {1:1:8:3:5:13} = 65;
c x c =(0,0,1) = {0:0:65:0:65:65} = 4225;
aa x bb *=(0,32,21) = {0:32:65:40:25:169} = 4225;
b x ca =(0,104,27) = {0:104:65:52:13:325} = 4225;
a x cb =(0,360,31) = {0:360:65:60:5:845} = 4225;
1 x cc *=(0,2048,33) = {0:2048:65:64:1:4225} = 4225;
((1xcc).x - (aaxbb).x) / ((1xcc).x - (axcb).x)) - 1 == (axb).a
((64-40)/(64-60)) - 1 == 5 = 5; (a matches)
βββββββββ
145=5x29
1 x c *=(1,61,6) = {1:61:12:11:1:145} = 145;
a x b **=(1,5,4) = {1:5:12:7:5:29} = 145;
c x c =(0,0,1) = {0:0:145:0:145:145} = 21025;
aa x bb *=(0,288,61) = {0:288:145:120:25:841} = 21025;
b x ca =(0,232,59) = {0:232:145:116:29:725} = 21025;
a x cb =(0,1960,71) = {0:1960:145:140:5:4205} = 21025;
1 x cc *=(0,10368,73) = {0:10368:145:144:1:21025} = 21025;
((1xcc).x - (aaxbb).x) / ((1xcc).x - (axcb).x)) - 1 == (axb).a
((144-120)/(144-140)) - 1 == 5 = 5; (a matches)
βββββββββ
785=5x157
1 x c *=(1,365,14) = {1:365:28:27:1:785} = 785;
a x b **=(1,53,12) = {1:53:28:23:5:157} = 785;
c x c =(0,0,1) = {0:0:785:0:785:785} = 616225;
aa x bb *=(0,11552,381) = {0:11552:785:760:25:24649} = 616225;
b x ca =(0,1256,315) = {0:1256:785:628:157:3925} = 616225;
a x cb =(0,60840,391) = {0:60840:785:780:5:123245} = 616225;
1 x cc *=(0,307328,393) = {0:307328:785:784:1:616225} = 616225;
((1xcc).x - (aaxbb).x) / ((1xcc).x - (axcb).x)) - 1 == (axb).a
((784-760)/(784-780)) - 1 == 5 = 5; (a matches)
βββββββββ
901=17x53
1 x c *=(1,421,15) = {1:421:30:29:1:901} = 901;
a x b **=(1,5,7) = {1:5:30:13:17:53} = 901;
c x c =(0,0,1) = {0:0:901:0:901:901} = 811801;
aa x bb *=(0,648,307) = {0:648:901:612:289:2809} = 811801;
b x ca =(0,6784,425) = {0:6784:901:848:53:15317} = 811801;
a x cb =(0,22984,443) = {0:22984:901:884:17:47753} = 811801;
1 x cc *=(0,405000,451) = {0:405000:901:900:1:811801} = 811801;
((1xcc).x - (aaxbb).x) / ((1xcc).x - (axcb).x)) - 1 == (axb).a
((900-612)/(900-884)) - 1 == 17 = 17; (a matches)
βββββββββ
6107=31x197
1 x c *=(23,2976,39) = {23:2976:78:77:1:6107} = 6107;
a x b **=(23,36,24) = {23:36:78:47:31:197} = 6107;
c x c =(0,0,1) = {0:0:6107:0:6107:6107} = 37295449;
aa x bb *=(0,13778,2574) = {0:13778:6107:5146:961:38809} = 37295449;
b x ca =(0,88650,2956) = {0:88650:6107:5910:197:189317} = 37295449;
a x cb =(0,595448,3039) = {0:595448:6107:6076:31:1203079} = 37295449;
1 x cc *=(0,18641618,3054) = {0:18641618:6107:6106:1:37295449} = 37295449;
((1xcc).x - (aaxbb).x) / ((1xcc).x - (axcb).x)) - 1 == (axb).a
((6106-5146)/(6106-6076)) - 1 == 31 = 31; (a matches)
βββββββββ
20413=137x149
1 x c *=(249,10065,71) = {249:10065:142:141:1:20413} = 20413;
a x b **=(249,1,3) = {249:1:142:5:137:149} = 20413;
c x c =(0,0,1) = {0:0:20413:0:20413:20413} = 416690569;
aa x bb *=(0,72,823) = {0:72:20413:1644:18769:22201} = 416690569;
b x ca =(0,1377952,10133) = {0:1377952:20413:20264:149:2796581} = 416690569;
a x cb =(0,1500424,10139) = {0:1500424:20413:20276:137:3041537} = 416690569;
1 x cc *=(0,208324872,10207) = {0:208324872:20413:20412:1:416690569} = 416690569;
((1xcc).x - (aaxbb).x) / ((1xcc).x - (axcb).x)) - 1 == (axb).a
((20412-1644)/(20412-20276)) - 1 == 137 = 137; (a matches)