>If you multiply c by small primes, the smoothness of BigN-n increase.
>Once the size of the product of small primes is larger than the root of c, when that product is multiplied by c, there is enough information to imply n.
Using this method >>8755
for RSA100:
c = 1522605027922533360535618378132637429718068114961380688657908494580122963258952897654000350692006139
Provides list of 26 primes:
[5, 11, 17, 23, 31, 41, 47, 59, 67, 73, 83, 97, 103, 109, 127, 137, 149, 157, 167, 179, 191, 197, 211, 227, 233, 241]
These are our "Helper" primes, our friends on the Grid.
Product of the Helpers:
primeProd = 41257856375896281668876416228583805794533827727585
Now, for the Helper c (c') we will call cQ = primeProd * c
cQ = 62819419559245428990590666648167912190753692290005426173804705886475986730546752279947003199446823008746292532203222745368434870226476085407239644315
Then, running this cQ through the Test program provided provides:
c = 62819419559245428990590666648167912190753692290005426173804705886475986730546752279947003199446823008746292532203222745368434870226476085407239644315
d_raw = 250638024966774403025013316223313816646669634534476971992571474945100141137.8477
d = 250638024966774403025013316223313816646669634534476971992571474945100141137
d^2 = 62819419559245428990590666648167912190753692290005426173804705886475986730122196691381219796056678466160777063949696723671284885418579019077953519616.0000
(d+1)^2 = 62819419559245428990590666648167912190753692290005426173804705886475986730623097834245891753493543307621394463186788408435522860046054377144411226112.0000
e = 424555588565783403390144542585515468253526021697149984807897066329286124699
a = 1
b = 62819419559245428990590666648167912190753692290005426173804705886475986730547123410460421227321461515089448967006206600869871244846825310488828575744
f = -76345554298888554046720298875101930983565663067087989819578291737171581797
x = 250638024966774403025013316223313816646669634534476971992571474945100141136
X = 62819419559245428990590666648167912190753692290005426173804705886475986729620412124984158646455021975949788205454691296958609101312042857910849503232.0000
Xpe = 62819419559245428990590666648167912190753692290005426173804705886475986730045338844063360077719805024878460108511201174157195460740289149321724559360.0000
Half_Xpe = 31409709779622714495295333324083956095376846145002713086902352943237993365022669422031680038859902512439230054255600587078597730370144574660862279680.0000
n = 31409709779622714495295333324083956095376846145002713086902352943237993365022669422031680038859902512439230054255600587078597730370144574660862279680
dpn = 31409709779622714495295333324083956095376846145002713086902352943237993365273119993464016017578334933169538753874146429460716717683882253694091132928
DPN = 986569868440126791986193534547739745680544007989124346659614805260975644490424274974780234053208940545490504751842760925502448328942543703363993300433751046989999127500313979973409365100438103716848552572009664106794849873336995774593749279083475218738252059496372285076090360868430678887772454912.0000
DPNmc = 986569868440126791986193534547739745680544007989124346659614805260975644490424274974780234053208940545490504751842760925502448328942543703363993300433751046989999127500313979973409365100438103716848552572009664106794849873336995774593749279083475218738252059496372285076090360868430678887772454912.0000
rtDPNmc = 31409709779622714495295333324083956095376846145002713086902352943237993365273119993464016017578334933169538753874146429460716717683882253694091132928.000000000
rtDPNmc_minusx = 31409709779622714495295333324083956095376846145002713086902352943237993365022669422031680038859902512439230054255600587078597730370144574660862279680.000000000
mid_a_b_gap = -441711766194596082395824375185729628956870974218904739530401550323154944.00
Your rtDPNmc_minusx - n = ZERO! Yes, 0.0
You passed the Test, you may enter the GRID!