01/07/2020
Can the flu shot help fight cancer?
https://medicalxpress.com/news/2020-01-flu-shot-cancer.html
http://archive.is/jV2SL
Changing the microenvironment of tumors to increase the immune system's response to them has been the goal of countless research and clinical studies including the most recent use of checkpoint inhibitory antibodies. The majority of patients have tumors that are "cold"—that is, the tumors don't contain many immune cells, or they have cells that suppress the ability of the immune system to fight them.
Increasing immune cells within a tumor can change it from "cold" to "hot"—more recognizable to the immune system. Hot tumors show higher rates of response to treatment, and patients with such tumors have improved survival rates.
Physicians and scientists at Rush University Medical Center have found that injecting tumors with influenza vaccines, including some FDA-approved seasonal flu shots, turns cold tumors to hot, a discovery that could lead to an immunotherapy to treat cancer. The study results were published December 30th in the Proceedings of the National Academy of Sciences.
Inactivated flu vaccines can make tumors hot
Currently, some immunotherapies utilize live pathogens (disease-causing organisms) as cancer treatments, but these treatments only have shown lasting effects in a limited number of patients and cancer types. "We wanted to understand how our strong immune responses against pathogens like influenza and their components could improve our much weaker immune response against some tumors," said Andrew Zloza, MD, Ph.D., assistant professor in Rush Medical College's Department of Internal Medicine and senior author of the study.
Drawing on a National Cancer Institute database, researchers found that people who had lung cancer and hospitalization for a lung infection from influenza at the same time lived longer than those who had lung cancer with no influenza. They found a similar outcome in mice with tumors and influenza infection in the lung.
"However, there are many factors we do not understand about live infections, and this effect does not repeat in tumors where influenza infections do not naturally occur, like skin," said Zloza.
To find an alternative to the limitations of live infection, researchers inactivated the influenza virus, essentially creating a flu vaccine.
They found that direct injection of this vaccine into the skin melanoma of the mice resulted in the tumors either growing slower or shrinking. The injection made the tumor hot by increasing the proportion of a type of immune-stimulating cells (called dendritic cells) in the tumor, leading to an increase in a type of cells known as CD8+ T cells, which recognize and kill tumor cells.
Importantly, injecting a skin melanoma tumor on one side of the body not only resulted in the reduced growth of that tumor, but also in reduced growth of a second skin tumor on the other side of the same mouse that was not injected.
The study authors note that they observed similar systemic outcomes in a mouse model of metastatic triple-negative breast cancer, in which both primary tumor growth and the natural spread of the breast tumor to the lungs were reduced after injection only into the primary tumor. "Based on this result, we hope that in patients, injecting one tumor with an influenza vaccine with lead to immune responses in their other tumors as well," Zloza said.
FDA-approved flu shots also reduced tumor growth
"Our successes with a flu vaccine that we created made us wonder if seasonal flu vaccines that are already FDA-approved could be repurposed as treatments for cancer," Zloza said. "Since these have been used in millions of people and have already been shown to be safe, we thought using flu shots to treat cancer could be brought to patients quickly."
The researchers found that injection of such flu shots also resulted in reduction of tumor growth.
To determine if similar results could be obtained with tumors from patients, the researchers developed a mouse model, which they call AIR-PDX. To create this model, they implant a piece of tumor and immune cells from a patient with cancer into a mouse that does not have a functioning immune system of its own—which prevents the mouse from rejecting the implanted cells.
"Such transplant allows us to utilize patient-grade drugs in a living system. This is as close as we can get to testing something ahead of a clinical trial," Zloza said.
The researchers used a patient's lung tumor and a melanoma metastasis in AIR-PDX models. They found that putting the flu shot in these patient-derived tumors causes them to shrink, while untreated tumors continued to grow.
…