>>8507184
In logic, reductio ad absurdum (Latin for '"reduction to absurdity"'), also known as argumentum ad absurdum (Latin for "argument to absurdity"), apagogical arguments, negation introduction or the appeal to extremes, is a form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction.[1][2] It can be used to disprove a statement by showing that it would inevitably lead to a ridiculous, absurd, or impractical conclusion,[3] or to prove a statement by showing that if it were false, then the result would be absurd or impossible.[4][5] Traced back to classical Greek philosophy in Aristotle's Prior Analytics[5] (Greek: ἡ εἰς τὸ ἀδύνατον ἀπόδειξις, lit. 'demonstration to the impossible', 62b), this technique has been used throughout history in both formal mathematical and philosophical reasoning, as well as in debate.[6]
The "absurd" conclusion of a reductio ad absurdum argument can take a range of forms, as these examples show:
The Earth cannot be flat; otherwise, we would find people falling off the edge.
There is no smallest positive rational number because, if there were, then it could be divided by two to get a smaller one.
The first example argues that denial of the premise would result in a ridiculous conclusion, against the evidence of our senses. The second example is a mathematical proof by contradiction (also known as an indirect proof[7]), which argues that the denial of the premise would result in a logical contradiction (there is a "smallest" number and yet there is a number smaller than it).[8]>YUGE SOY DUES FAGS
>>8507135 >Examples of chiasmus and its subtype antimetabole >>8507113 >antimetabole >>8507072 >Epanalepsis >>8507062 >Anadiplosis
>>8507034 >Anadiplosis >>8506990 >polysyllogism >>8506947 >The Epimenides paradox >>8506898 >circulus in probando >>8506874 >Begging or assuming the point at issue consists
>>8506852 >>8506840 >Self-refuting ideas or self-defeating ideas >>8506817 >jew noddle goals >>8506787 >rub your jew noodles on it
>>8506761 >begging the question is an informal fallacy that occurs when an argument's premises assume the truth of the conclusion, instead of supporting it.
>>8506740 >[petitio principii] >>8506701 >Complex question fallacy >Further information: Loaded question
>>8506669 > misleading discourse involves presupposing and implying something without stating it explicitly, by phrasing it as a question
>>8506647 >presupposition >>8506608 > getting those hobbits to mordor 2020 >>8506575 >Presupposition triggers >>8506557 >Projection of presuppositions
>>8506542 >presupposition (or PSP) is an implicit assumption about the world or background belief relating to an utterance whose truth is taken for granted in discourse
In current usage, there are multiple and sometimes conflicting definitions for zeugma and syllepsis. This article categorizes these two figures of speech into four types, based on four definitions:
Type 1
Grammatical syllepsis (sometimes also called zeugma): where a single word is used in relation to two other parts of a sentence although the word grammatically or logically applies to only one.[2][4]
By definition, grammatical syllepsis will often be grammatically "incorrect" according to traditional grammatical rules. However, such solecisms are sometimes not errors but intentional constructions in which the rules of grammar are bent by necessity or for stylistic effect.
"He works his work, I mine" (Tennyson, "Ulysses").[4]
It is ungrammatical from a grammarian's viewpoint, because "works" does not grammatically agree with "I": the sentence "I works mine" would be ungrammatical. On the other hand, Tennyson's two sentences could be taken to deploy a different figure of speech, namely "ellipsis". The sentence would be taken to mean,
"He works his work, [and] I [work] mine."
Read in this way, the conjunction is not ungrammatical.
Sometimes the "error" is logical, rather than grammatical:
"They saw lots of thunder and lightning."[4]
Logically, they "saw" only the lightning.