Anonymous ID: d6f59c Jan. 27, 2018, 9:39 a.m. No.3418   🗄️.is 🔗kun

>>3416

Good luck with an RSA sized number and GCD

Here is an example of two miniscule numbers relative to RSA.

D(t)-d E N D X A B

28 32 61 38 23 163

47 28 1 14 0 14 16

43 28 1 18 2 16 22

35 28 1 26 4 22 32

23 28 1 38 6 32 46

7 28 1 54 8 46 64

-13 28 1 74 10 64 86

-37 28 1 98 12 86 112

-65 28 1 126 14 112 142

-97 28 1 158 16 142 176

-133 28 1 194 18 176 214

-173 28 1 234 20 214 256

-217 28 1 278 22 256 302

-265 28 1 326 24 302 352

-317 28 1 378 26 352 406

-373 28 1 434 28 406 464

-433 28 1 494 30 464 526

-497 28 1 558 32 526 592

-565 28 1 626 34 592 662

-637 28 1 698 36 662 736

-713 28 1 774 38 736 814

-793 28 1 854 40 814 896

-877 28 1 938 42 896 982

Anonymous ID: d6f59c Jan. 27, 2018, 9:45 a.m. No.3419   🗄️.is 🔗kun

>>3416

Try again

D(t)-d E N D X A B

28 32 61 38 23 163

47 28 1 14 0 14 16

43 28 1 18 2 16 22

35 28 1 26 4 22 32

23 28 1 38 6 32 46

7 28 1 54 8 46 64

-13 28 1 74 10 64 86

-37 28 1 98 12 86 112

-65 28 1 126 14 112 142

-97 28 1 158 16 142 176

-133 28 1 194 18 176 214

-173 28 1 234 20 214 256

-217 28 1 278 22 256 302

-265 28 1 326 24 302 352

-317 28 1 378 26 352 406

-373 28 1 434 28 406 464

-433 28 1 494 30 464 526

-497 28 1 558 32 526 592

-565 28 1 626 34 592 662

-637 28 1 698 36 662 736

-713 28 1 774 38 736 814

-793 28 1 854 40 814 896

-877 28 1 938 42 896 982

Anonymous ID: d6f59c Jan. 28, 2018, 11:47 a.m. No.3489   🗄️.is 🔗kun

New useless solution record corrected.

For {E, N, D, X, A, C}

Increase N by X

Decrease D and X by X so X=0 and D=A

A and B stay the same

Record is:

{ 2*(NA+XA), N+X, A, 0, A, B}

Anonymous ID: d6f59c Jan. 31, 2018, 7:08 a.m. No.3751   🗄️.is 🔗kun   >>3752 >>3754 >>3757 >>3788

Found pattern in (e,1) and (f,1) records. Using /_\ for delta for example:

/_\ d(e) = d( e, n, t) - d(e, 1, 1)

Then

/\d(e) = /\ a(e) + /_\x(e)

/\d(f) = /\ a(f) + /_\x(f)

After testing large number of combinations both A and X exhibit occasional negative /_. I was working on way to try and solve for x or a using differences between e and f but grid continues to hide its secrets.

 

New hint from QVC.

Recursion gives the pattern of triangle numbers used to construct the square that added to c makes the square with sides d+n.